A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

MiRP1 modulates HCN2 channel expression and gating in cardiac myocytes. | LitMetric

MinK-related protein (MiRP1 or KCNE2) interacts with the hyperpolarization-activated, cyclic nucleotide-gated (HCN) family of pacemaker channels to alter channel gating in heterologous expression systems. Given the high expression levels of MiRP1 and HCN subunits in the cardiac sinoatrial node and the contribution of pacemaker channel function to impulse initiation in that tissue, such an interaction could be of considerable physiological significance. However, the functional evidence for MiRP1/HCN interactions in heterologous expression studies has been accompanied by inconsistencies between studies in terms of the specific effects on channel function. To evaluate the effect of MiRP1 on HCN expression and function in a physiological context, we used an adenovirus approach to overexpress a hemagglutinin (HA)-tagged MiRP1 (HAMiRP1) and HCN2 in neonatal rat ventricular myocytes, a cell type that expresses both MiRP1 and HCN2 message at low levels. HA-MiRP1 co-expression with HCN2 resulted in a 4-fold increase in maximal conductance of pacemaker currents compared with HCN2 expression alone. HCN2 activation and deactivation kinetics also changed, being significantly more rapid for voltages between -60 and -95 mV when HA-MiRP1 was co-expressed with HCN2. However, the voltage dependence of activation was not affected. Co-immunoprecipitation experiments demonstrated that expressed HA-MiRP1 and HCN2, as well as endogenous MiRP1 and HCN2, co-assemble in ventricular myocytes. The results indicate that MiRP1 acts as a beta subunit for HCN2 pacemaker channel subunits and alters channel gating at physiologically relevant voltages in cardiac cells.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M405018200DOI Listing

Publication Analysis

Top Keywords

hcn2
10
mirp1
8
channel gating
8
heterologous expression
8
mirp1 hcn
8
pacemaker channel
8
channel function
8
ventricular myocytes
8
mirp1 hcn2
8
channel
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!