The apical junctional complex is composed of various cell adhesion molecules and cytoplasmic plaque proteins. Using a monoclonal antibody that recognizes a chicken 155-kDa cytoplasmic antigen (p155) localizing at the apical junctional complex, we have cloned a cDNA of its mouse homologue. The full-length cDNA of mouse p155 encoded a 148-kDa polypeptide containing a coiled-coil domain with sequence similarity to cingulin, a tight junction (TJ)-associated plaque protein. We designated this protein JACOP (junction-associated coiled-coil protein). Immunofluorescence staining showed that JACOP was concentrated in the junctional complex in various types of epithelial and endothelial cells. Furthermore, in the liver and kidney, JACOP was also distributed along non-junctional actin filaments. Upon immunoelectron microscopy, JACOP was found to be localized to the undercoat of TJs in the liver, but in some tissues, its distribution was not restricted to TJs but extended to the area of adherens junctions. Overexpression studies have revealed that JACOP was recruited to the junctional complex in epithelial cells and to cell-cell contacts and stress fibers in fibroblasts. These findings suggest that JACOP is involved in anchoring the apical junctional complex, especially TJs, to actin-based cytoskeletons.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M402616200 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!