Caveolin-1 is a scaffolding/regulatory protein that interacts with diverse signaling molecules in endothelial cells. To explore the role of this protein in receptor-modulated signaling pathways, we transfected bovine aortic endothelial cells (BAEC) with small interfering RNA (siRNA) duplexes to down-regulate caveolin-1 expression. Transfection of BAEC with duplex siRNA targeted against caveolin-1 mRNA selectively "knocked-down" the expression of caveolin-1 by approximately 90%, as demonstrated by immunoblot analyses of BAEC lysates. We used discontinuous sucrose gradients to purify caveolin-containing lipid rafts from siRNA-treated endothelial cells. Despite the near-total down-regulation of caveolin-1 expression, the lipid raft targeting of diverse signaling proteins (including the endothelial isoform of nitric-oxide synthase, Src-family tyrosine kinases, Galphaq and the insulin receptor) was unchanged. We explored the consequences of caveolin-1 knockdown on kinase pathways modulated by the agonists sphingosine-1 phosphate (S1P) and vascular endothelial growth factor (VEGF). siRNA-mediated caveolin-1 knockdown enhanced basal as well as S1P- and VEGF-induced phosphorylation of the protein kinase Akt and did not modify the basal or agonist-induced phosphorylation of extracellular signal-regulated kinases 1/2. Caveolin-1 knock-down also significantly enhanced the basal and agonist-induced activity of the small GTPase Rac. We used siRNA to down-regulate Rac expression in BAEC, and we observed that Rac knockdown significantly reduced basal, S1P-, and VEGF-induced Akt phosphorylation, suggesting a role for Rac activation in the caveolin siRNA-mediated increase in Akt phosphorylation. By using siRNA to knockdown caveolin-1 and Rac expression in cultured endothelial cells, we have found that caveolin-1 does not seem to be required for the targeting of signaling molecules to caveolae/lipid rafts and that caveolin-1 differentially modulates specific kinase pathways in endothelial cells.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M407051200DOI Listing

Publication Analysis

Top Keywords

endothelial cells
24
caveolin-1
12
small interfering
8
down-regulation caveolin-1
8
caveolin-1 differentially
8
differentially modulates
8
signaling pathways
8
endothelial
8
pathways endothelial
8
cells caveolin-1
8

Similar Publications

Background: Bladder cancer (BCa) is one of the most common malignancies worldwide, and its prognostication and treatment remains challenging. The fast growth of various cancer cells requires reprogramming of its energy metabolism using aerobic glycolysis as a major energy source. However, the prognostic and therapeutic value of glycolysis-related genes in BCa remains to be determined.

View Article and Find Full Text PDF

Targeting tumor angiogenesis with safe endogenous protein inhibitors is a promising therapeutic approach despite the plethora of the first line of emerging chemotherapeutic drugs. The extracellular matrix network in the blood vessel basement membrane and growth factors released from endothelial and tumor cells promote the neovascularization which supports the tumor growth. Contrastingly, small cleaved cryptic fragments of the C-terminal non collagenous domains of the same basement membrane display antiangiogenic effect.

View Article and Find Full Text PDF

iRGD-Targeted Biosynthetic Nanobubbles for Ultrasound Molecular Imaging of Osteosarcoma.

Int J Nanomedicine

January 2025

Department of Ultrasound, The second People's Hospital of Shenzhen, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518061, People's Republic of China.

Purpose: Osteosarcoma is the most common primary malignant tumor of the bone. However, there is a lack of effective means for early diagnosis due to the heterogeneity of tumors and the complexity of tumor microenvironment. αvβ3 integrin, a crucial role in the growth and spread of tumors, is not only an effective biomarker for cancer angiogenesis, but also highly expressed in many tumor cells.

View Article and Find Full Text PDF

Purpose: The main purpose of the study was the formulation development of nanogels (NHs) composed of chondroitin sulfate (CS) and low molecular weight chitosan (lCH), loaded with a naringenin-β-cyclodextrin complex (NAR/β-CD), as a potential treatment for early-stage diabetic retinopathy.

Methods: Different formulations of NHs were prepared by varying polymer concentration, lCH ratio, and pH and, then, characterized for particle size, zeta potential, particle concentration (particles/mL) and morphology. Cytotoxicity and internalization were assessed in vitro using Human Umbilical Vein Endothelial Cells (HUVEC).

View Article and Find Full Text PDF

Background: Glaucoma, particularly open-angle glaucoma (OAG), is a leading cause of irreversible blindness, associated with optic nerve damage, retinal ganglion cell death, and visual field defects. Corneal biomechanical properties and cellular components, such as corneal nerve and keratocyte densities assessed by in vivo confocal microscopy (IVCM), may serve as biomarkers for glaucoma progression. This study aimed to explore the relationship between corneal nerve parameters, keratocyte density, and optical coherence tomography (OCT)-derived retinal nerve fiber layer (RNFL) thickness in primary open-angle glaucoma (POAG) patients and controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!