Xylella fastidiosa is a phytopathogenic bacterium that causes serious diseases in a wide range of economically important crops. Despite extensive comparative analyses of genome sequences of Xylella pathogenic strains from different plant hosts, nonpathogenic strains have not been studied. In this report, we show that X. fastidiosa strain J1a12, associated with citrus variegated chlorosis (CVC), is nonpathogenic when injected into citrus and tobacco plants. Furthermore, a DNA microarray-based comparison of J1a12 with 9a5c, a CVC strain that is highly pathogenic and had its genome completely sequenced, revealed that 14 coding sequences of strain 9a5c are absent or highly divergent in strain J1a12. Among them, we found an arginase and a fimbrial adhesin precursor of type III pilus, which were confirmed to be absent in the nonpathogenic strain by PCR and DNA sequencing. The absence of arginase can be correlated to the inability of J1a12 to multiply in host plants. This enzyme has been recently shown to act as a bacterial survival mechanism by down-regulating host nitric oxide production. The lack of the adhesin precursor gene is in accordance with the less aggregated phenotype observed for J1a12 cells growing in vitro. Thus, the absence of both genes can be associated with the failure of the J1a12 strain to establish and spread in citrus and tobacco plants. These results provide the first detailed comparison between a nonpathogenic strain and a pathogenic strain of X. fastidiosa, constituting an important step towards understanding the molecular basis of the disease.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC490883 | PMC |
http://dx.doi.org/10.1128/JB.186.16.5442-5449.2004 | DOI Listing |
Sci Adv
January 2025
Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
Bacterial social interactions play crucial roles in various ecological, medical, and biotechnological contexts. However, predicting these interactions from genome sequences is notoriously difficult. Here, we developed bioinformatic tools to predict whether secreted iron-scavenging siderophores stimulate or inhibit the growth of community members.
View Article and Find Full Text PDFBioresour Technol
January 2025
Institute of Chemical Engineering, Bulgarian Academy of Sciences, Acad. Georgi Bontchev str., bl. 103, 1113 Sofia, Bulgaria. Electronic address:
The present study investigates the natural ability of Bacillus velezensis R22 to produce 2,3-BD from two inulin-rich substrates - insoluble and soluble chicory flour. After complex optimization of the media content and process parameters by consecutive application of Plackett-Burman design and response surface methodology, the strain R22 was capable of producing 71.2 g/L (95.
View Article and Find Full Text PDFGene
January 2025
Área Microbiología e Inmunología, Facultad de Química, BioquímicaArgentina y Farmacia, Universidad Nacional de San Luis, Ejercito de los Andes 950, P. O. 5700 San Luis, Argentina. Electronic address:
Yersinia enterocolitica, a bacterial enteropathogen that produces a variety of clinical manifestations in humans, includes six biotypes (B), called 1A, 1B, 2, 3, 4 and 5 and about 70 serotypes. The biotypes exhibit diverse pathogenic potential; while 1B and 2-5 may show ability to produce clinical symptoms due to the presence of chromosomal and plasmid (pYV) virulence genes, B1A is supposed a non-pathogenic biotype since it lacks pYV plasmid. Therefore, although B1A strains cause diarrhea in humans, their pathogenic potential has not yet been extensively studied.
View Article and Find Full Text PDFAfter decades of inactivity throughout the Americas, western equine encephalitis virus (WEEV) recently re-emerged in South America, causing a large-scale outbreak in humans and horses. WEEV binds protocadherin 10 (PCDH10) as a receptor; however, nonpathogenic strains no longer bind human or equine PCDH10 but retain the ability to bind avian receptors. Highly virulent WEEV strains can also bind the very low-density lipoprotein receptor (VLDLR) and apolipoprotein E receptor 2 (ApoER2) as alternative receptors.
View Article and Find Full Text PDFAmplified by the decline in antibiotic discovery, the rise of antibiotic resistance has become a significant global challenge in infectious disease control. Extraintestinal (ExPEC), known to be the most common instigators of urinary tract infections (UTIs), represent such global threat. Novel strategies for more efficient treatments are therefore desperately needed.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!