Overview of melanoma vaccines and promising approaches.

Curr Oncol Rep

Immunogenetics Section, Department of Transfusion Medicine, Clinical Center, National Institutes of Health, Bldg 10, R-1C711, 9000 Rockville Pike, Bethesda, MD 20892, USA.

Published: September 2004

It is difficult to envision anything better than melanoma vaccines to exemplify the effectiveness of modern biotechnology in developing biologically rational therapeutics. Melanoma vaccines can reproducibly induce cytotoxic T lymphocyte (CTL) responses better than any other anticancer therapy. Anticancer vaccines have been labeled by some as ineffective for the simple reason that they only rarely lead to cancer regression. This oxymoron stems from the naïve expectation that CTLs are all that is needed to reject cancer. Little is known about requirements for CTL localization and effector function within the tumor microenvironment. In the future, more attention should be given to events downstream of immunization (afferent arm of immune response) to identify combination therapies likely to facilitate localization and activation of CTL at the receiving end (efferent arm).

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11912-004-0069-3DOI Listing

Publication Analysis

Top Keywords

melanoma vaccines
12
overview melanoma
4
vaccines
4
vaccines promising
4
promising approaches
4
approaches difficult
4
difficult envision
4
envision better
4
better melanoma
4
vaccines exemplify
4

Similar Publications

Caerin 1.1/1.9-mediated antitumor immunity depends on IFNAR-Stat1 signalling of tumour infiltrating macrophage by autocrine IFNα and is enhanced by CD47 blockade.

Sci Rep

January 2025

Key Laboratory of Cancer Immunotherapy of Guangdong Tertiary Education, Guangdong CAR-T Treatment Related Adverse Reaction Key Laboratory, The First Affiliated Hospital/Clinical Medical School, Guangdong Pharmaceutical University, Guangzhou, 510080, China.

Previously, we demonstrated that natural host-defence peptide caerin 1.1/caerin 1.9 (F1/F3) increases the efficacy of anti-PD-1 and therapeutic vaccine, in a HPV16 + TC-1 tumour model, but the anti-tumor mechanism of F1/F3 is still unclear.

View Article and Find Full Text PDF

Individualized Neoantigen-Directed Melanoma Therapy.

Am J Clin Dermatol

January 2025

Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02115, USA.

Individualized neoantigen-directed therapy represents a groundbreaking approach in melanoma treatment that leverages the patient's own immune system to target cancer cells. This innovative strategy involves the identification of unique immunogenic neoantigens (mutated proteins specific to an individual's tumor) and the development of therapeutic vaccines that either consist of peptide sequences or RNA encoding these neoantigens. The goal of these therapies is to induce neoantigen-specific immune responses, enabling the immune system to recognize and destroy cancer cells presenting the targeted neoantigens.

View Article and Find Full Text PDF

Melanoma, a highly aggressive skin cancer, remains a significant cause of mortality despite advancements in therapeutic strategies. There is an urgent demand for developing vaccines that can elicit strong and comprehensive immune responses against this malignancy. Achieving this goal is crucial to enhance the efficacy of immunological defense mechanisms in combating this disease.

View Article and Find Full Text PDF

Cancer is one of the leading causes of death worldwide. In recent years, immune checkpoint inhibitor therapies, in addition to standard immuno- or chemotherapy and surgical approaches, have massively improved the outcome for cancer patients. However, these therapies have their limitations and improved strategies, including access to reliable cancer vaccines, are needed.

View Article and Find Full Text PDF

Effective cancer therapies must address the tumor microenvironment (TME), a complex network of tumor cells and stromal components, including endothelial, immune, and mesenchymal cells. Durable outcomes require targeting both tumor cells and the TME while minimizing systemic toxicity. Interleukin-2 (IL-2)-based therapies have shown efficacy in cancers such as metastatic melanoma and renal cell carcinoma but are limited by severe side effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!