Significant role of liver sinusoidal endothelial cells in hepatic uptake and degradation of naked plasmid DNA after intravenous injection.

Pharm Res

Department of Biopharmaceutics and Drug Metabolism, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan.

Published: July 2004

Purpose: Uptake and degradation of naked plasmid DNA (pDNA) by liver sinusoidal endothelial cells (LSECs) were investigated.

Methods: Tissue distribution and intrahepatic localization were determined after an intravenous injection of 111In- or 32P-labeled pDNA into rats. Cellular uptake and degradation of fluorescein- or 32P-labeled pDNA were evaluated using primary cultures of rat LSECs.

Results: Following intravenous injection, pDNA was rapidly eliminated from the circulation and taken up by the liver. Fractionation of liver-constituting cells by centrifugal elutriation revealed a major contribution of LSECs to the overall hepatic uptake of pDNA. Confocal microscopic study confirmed intracellular uptake of pDNA in cultured LSECs. Apparent cellular association of pDNA was similar at 37 degrees C and 4 degrees C. However, trichloroacetic acid (TCA) precipitation experiments showed the TCA-soluble radioactivity in the culture medium increased in an accumulative manner at 37 degrees C. Involvement of a specific mechanism was demonstrated, as the uptake of pDNA was significantly inhibited by excess unlabeled pDNA and some polyanions (polyinosinic acid, dextran sulfate, heparin) but not by others (polycytidylic acid, dextran). These inhibitors also reduced the amount of TCA-soluble radioactivity in the culture medium. CONCLUSION. These results suggest that LSECs efficiently ingested and rapidly degraded naked pDNA in vivo and in vitro and released the degradation products into the extracellular space.

Download full-text PDF

Source
http://dx.doi.org/10.1023/b:pham.0000033009.17594.e5DOI Listing

Publication Analysis

Top Keywords

uptake degradation
12
intravenous injection
12
uptake pdna
12
pdna
10
liver sinusoidal
8
sinusoidal endothelial
8
endothelial cells
8
hepatic uptake
8
degradation naked
8
naked plasmid
8

Similar Publications

Oligonucleotide therapeutics, including antisense oligonucleotides and small interfering RNA, offer promising avenues for modulating the expression of disease-associated proteins. However, challenges such as nuclease degradation, poor cellular uptake, and unspecific targeting hinder their application. To overcome these obstacles, spherical nucleic acids have emerged as versatile tools for nucleic acid delivery in biomedical applications.

View Article and Find Full Text PDF

BackgroundThe first Corona Monitoring Nationwide (RKI-SOEP) study (October 2020-February 2021) found a low pre-vaccine SARS-CoV-2 antibody seroprevalence (2.1%) in the German adult population (≥ 18 years).AimThe objective of this second RKI-SOEP (RKI-SOEP-2) study in November 2021-March 2022 was to estimate the prevalence of SARS-CoV-2-specific anti-spike and/or anti-nucleocapsid (anti-N) IgG antibodies (combined seroprevalence), past infection based on infection-induced seroprevalence (anti-N), and basic immunisation (at least two antigen contacts through vaccination or infection) in individuals aged ≥ 14 years.

View Article and Find Full Text PDF

This review comprehensively explores the critical role of calcium as an essential small-molecule biomessenger in skeletal muscle function. Calcium is vital for both regulating muscle excitation-contraction coupling and for the development, maintenance, and regeneration of muscle cells. The orchestrated release of calcium from the endoplasmic reticulum (ER) is mediated by receptors such as the ryanodine receptor (RYR) and inositol 1,4,5-trisphosphate receptor (IP3R), which is crucial for skeletal muscle contraction.

View Article and Find Full Text PDF

Background: Bone marrow mesenchymal stem cells (BMSCs) are a crucial component of the tumor microenvironment (TME), with hypoxic conditions promoting their migration to tumors. Exosomes play a vital role in cell-to-cell communication within the TME. Hypoxic TME have a great impact on the release, uptake and biofunctions of exosomes.

View Article and Find Full Text PDF

Activation of the De Novo Serine Synthesis Pathway and Disruption of Insulin Signaling Induced by Supplemental SeMet in Vitro.

Biol Trace Elem Res

January 2025

Department of Nutrition and Metabolism, Chinese Center for Disease Control and Prevention, National Institute for Nutrition and Health, Beijing, 100050, China.

Selenium (Se) intake or selenoprotein overexpression can cause abnormal glucose metabolism and increase the risk of type 2 diabetes (T2D). The purpose of this study is to observe whether glycolysis bypass in the de novo serine synthesis pathway (SSP) is activated under high-Se stress in vitro. Initially, HCT-116, L02, HepG2, and differentiated C2C12 cells were exposed to five selenomethionine (SeMet) concentrations (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!