A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Kernel-based self-organized maps trained with supervised bias for gene expression data analysis. | LitMetric

Self-Organized Maps (SOMs) are a popular approach for analyzing genome-wide expression data. However, most SOM based approaches ignore prior knowledge about functional gene categories. Also, Self Organized Map (SOM) based approaches usually develop topographic maps with disjoint and uniform activation regions that correspond to a hard clustering of the patterns at their nodes. We present a novel Self-Organizing map, the Kernel Supervised Dynamic Grid Self-Organized Map (KSDG-SOM). This model adapts its parameters in a kernel space. Gaussian kernels are used and their mean and variance components are adapted in order to optimize the fitness to the input density. The KSDG-SOM also grows dynamically up to a size defined with statistical criteria. It is capable of incorporating a priori information for the known functional characteristics of genes. This information forms a supervised bias at the cluster formation and the model owns the potentiality of revising incorrect functional labels. The new method overcomes the main drawbacks of most of the existing clustering methods that lack a mechanism for dynamical extension on the basis of a balance between unsupervised and supervised drives.

Download full-text PDF

Source
http://dx.doi.org/10.1142/s021972000400034xDOI Listing

Publication Analysis

Top Keywords

self-organized maps
8
supervised bias
8
expression data
8
som based
8
based approaches
8
kernel-based self-organized
4
maps trained
4
supervised
4
trained supervised
4
bias gene
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!