An analytical system based on a compact flow cytometer for DNA fragment sizing and single-molecule detection.

Cytometry A

Bioscience Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Published: August 2004

Background: Previous reports have demonstrated accurate DNA fragment sizing of linear DNA fragments, from 564 to approximately 4 x 10(5) bp, in a flow system. B-phycoerythrin (B-PE), commonly used in conventional cytometric applications that require high-sensitivity, was the first fluorophore detected in flow at the single-molecule level.

Methods: Dilute solutions of stained DNA fragments or B-PE were analyzed in a simplified, compact flow system, with enhanced performance and lower cost, utilizing a solid-state laser and a single-photon sensing avalanche photodiode detector (SSAPD). Extensive data processing and display software, developed specifically for the photon-counting data stream, extracts correlated height, width, and area features from bursts of photons due to discrete molecules passing through the sensing region in the flow channel.

Results: DNA fragment sizing in flow has now been demonstrated for SYTOX-orange-stained fragments ranging in size over 3.4 orders of magnitude, from 125 to 5 x 10(5) bp. For Lambda bacteriophage DNA (lambda DNA; 48.5 kbp) a CV of 1.2 % has been achieved. Analysis of a femtomolar B-PE solution demonstrates that the bursts of photons from individual molecules can be baseline-resolved with 0.5 mW of laser power at a signal to noise ratio (SNR) of approximately 30, with approximately 100 photons detected from each molecule.

Conclusions: A compact, low-power, high-sensitivity system detects DNA fragments as small as 125 bp or individual B-PE molecules in a flowing liquid stream. Demonstrated linearity, sensitivity, and resolution indicate that <1.0 mW of laser power is optimal, permitting further miniaturization of the system and additional cost reduction. Comprehensive analytical software exploits the standard cytometric paradigm of multiple 2D graphs and gating to extract features from classes of individually analyzed biomolecules. This complete system is thus poised to engage high-sensitivity applications not amenable to conventional flow cytometric instrumentation.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cyto.a.20042DOI Listing

Publication Analysis

Top Keywords

dna fragment
12
fragment sizing
12
dna fragments
12
compact flow
8
dna
8
flow system
8
bursts photons
8
flow
6
analytical system
4
system based
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!