The centromere is an essential functional domain responsible for the correct inheritance of eukaryotic chromosomes during cell division. Eukaryotic centromeres include the highly conserved centromere-specific histone H3 variant, CENP-A, which has provided a powerful tool for investigating the recruitment of centromere components. However, the trigger that targets CENP-A to a specific genomic locus during centromere assembly remains unknown. Although, on rare occasions, CENP-A chromatin may assemble at non-centromeric DNA, all normal human centromeres are assembled and maintained on alpha-satellite (alphoid) DNA. The importance of alphoid DNA and CENP-B binding sites (CENP-B boxes), typical of normal human centromere DNA configurations, has been demonstrated through their requirement in de novo centromere assembly and Human Artificial Chromosome (HAC) assays. Mechanisms to link the centromere tightly to specific genomic sequences exist in humans and the two yeast species.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1023/B:CHRO.0000036593.72788.99 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!