Rats were given unilateral infusions of ethylcholine aziridinium ion (AF64A) into the basal forebrain (BF). BF-lesioned rats had significant acquisition and retention deficits in two different types of learning tasks (water maze and active avoidance). Choline acetyltransferase activity was lower than control in the frontal cortex but not in the hippocampus or striatum. AF64A markedly reduced the levels of norepinephrine, dopamine, and serotonin in all brain regions studied. However, L-glutamic acid decarboxylase activity was not altered by AF64A injection. Cholinergic agents (physostigmine and arecoline) ameliorated the AF64A-induced learning deficits in the water maze task but not in the active avoidance task. Noncholinergic agents (desipramine and L-dopa) ameliorated the AF64A-induced avoidance deficits in the active avoidance task but not in the water maze task. 5-Methoxy-N,N-dimethyltryptamine did not improve either active avoidance or water maze learning. These results suggest that intra-BF injection of AF64A produces extensive brain dysfunction and that different neuronal systems are involved in associative and spatial learning.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/0091-3057(92)90456-p | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!