Six specimens of Anoplotrupes stercorosus (Coleoptera Scarabaeoidea: Geotrupidae) were analysed using conventional staining, banding techniques and fluorescent in situ hybridization with a ribosomal probe (rDNA FISH). Detailed karyotype description was also joined to a comparative analysis between present data and those previously reported for Thorectes intermedius [Chromosome Res. 7 (1999) 1]. The two species, both belonging to the tribe Geotrupini, show the same modal number but different autosomal morphology which is in contrast with the high chromosome stability argued for Geotrupinae during the last three decades. Moreover, a detailed comparison reveals the occurrence of a plesiomorphic condition in A. stercorosus with respect to the apomorphic one of T. intermedius. This finding agrees with phylogenetic relationships proposed for the two genera based on morphological and anatomical characters.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micron.2004.04.004DOI Listing

Publication Analysis

Top Keywords

rdna fish
8
anoplotrupes stercorosus
8
stercorosus coleoptera
8
coleoptera scarabaeoidea
8
scarabaeoidea geotrupidae
8
comparative analysis
8
karyotype banding
4
banding rdna
4
fish scarab
4
scarab beetle
4

Similar Publications

The biodiversity of freshwater fishes is extensive in Mexico; however, knowledge of their associated myxozoan parasites is limited. This study aimed to recognize myxozoan parasites in the endemic fish Mayaheros urophthalmus. Two new species, Myxobolusmayarum n.

View Article and Find Full Text PDF

Helminths infection of Schizothorax niger in Kashmir, India: morphological and molecular characterization.

Mol Biol Rep

January 2025

Division of Animal Biotechnology, Faculty of Veterinary Sciences & Animal Husbandry, SKUAST-K, Srinagar, India.

Background: The identification of helminth parasites in Schizothorax spp. from Kashmir, including Schyzocotyle acheilognathi, Pomphorhynchus kashmirensis, and Adenoscolex oreini, is hindered by morphological limitations and high intraspecific variation. While previous studies have relied on morphological diagnosis, a comprehensive molecular characterization is lacking.

View Article and Find Full Text PDF

Studying complexes of cryptic or pseudocryptic species opens new horizons for the understanding of speciation processes, an important yet vague issue for the digeneans. We investigated a hemiuroidean trematode across a wide geographic range including the northern European seas (White, Barents, and Pechora), East Siberian Sea, and the Pacific Northwest (Sea of Okhotsk and Sea of Japan). The goals were to explore the genetic diversity within through mitochondrial ( and genes) and ribosomal (ITS1, ITS2, 28S rDNA) marker sequences, to study morphometry of maritae, and to revise the life cycle data.

View Article and Find Full Text PDF

Surface flow of freshwater on Adriatic islands is rare due to the extreme permeability of the karst terrain. Hence, most helminthological studies of freshwater fishes in the Adriatic drainage have focused on mainland freshwater systems, while data from islands are scarce. We collected minnow, (Schinz, 1840), specimens in the Suha Ričina stream on Krk Island and screened them for helminth ectoparasites.

View Article and Find Full Text PDF

n. sp. (Monogenea: Gyrodactylidae) parasitic on (Cypriniformes: Nemacheilidae) from Yunnan Province, Southwest China.

Int J Parasitol Parasites Wildl

April 2025

Guangxi Key Laboratory of Diabetic Systems Medicine, Guilin Medical University, Guilin, 541199, PR China.

To investigate the infection of fish of the genus by (Monogenea) parasites in the karst region of Yunnan (Southwest China), individuals were obtained from the rare and vulnerable host black loach . Based on morphology and partial internal transcribed spacer (ITS) sequence data, we identified and described a new species n. sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!