Interspecies differences in DNA single strand breaks caused by benzo(a)pyrene and marine environment.

Mutat Res

Institute Ruder Bosković, Center for Marine Research, G.Paliaga 5, Rovinj HR, 52210 Rovinj, Croatia.

Published: August 2004

The presence of DNA single strand breaks in untreated specimens of selected species, mosquito fish Gambusia affinis, painted comber Serranus scriba, blue mussel Mytilus galloprovincialis, spiny crab Maja crispata and sea cucumber Holothuria tubulosa as well as in 10 microg/g benzo(a)pyrene (BaP) treated mosquito fish, blue mussel and spiny crab was measured, using alkaline filter elution. Interspecies differences in alkaline elution profiles were observed and attributed to different lengths of DNA from different sources and to differences in the number of strand breaks present during normal cellular events in different phyla. Spiny crab hemocytes are more sensitive to action of BaP then blue mussel hemocytes and mosquito fish hepatocytes that could be explained by differences in the rates of distinct metabolic reactions and DNA repair among the investigated species. In field study, DNA single strand breaks were measured in hepatocytes of painted comber and in hemocytes of blue mussel and spiny crab from natural population specimens collected at eight sampling sites along Istrian coast, Croatia. Spatial variations in DNA integrity for each species were detected and revealed for the first time that spiny crab is responsive to different environmental conditions. Interspecies variations in the DNA integrity due to environmental conditions, confirmed species specific susceptibility to genotoxicity of certain environment that in long-term may modify the structure of marine communities. The multi-species approach in designing biomonitoring studies was suggested.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mrfmmm.2004.06.022DOI Listing

Publication Analysis

Top Keywords

spiny crab
20
strand breaks
16
blue mussel
16
dna single
12
single strand
12
mosquito fish
12
interspecies differences
8
painted comber
8
mussel spiny
8
variations dna
8

Similar Publications

The characterization of microplastic (MP) contamination in marine species is increasing as concerns about environmental and food safety are more and more discussed. Here, we reported a quantitative and qualitative assessment of the contamination by anthropogenic particles (from visual sorting; AP) and MP (plastic-made) in the whole soft body or digestive tract of marine species. Four commercial species were studied, namely the Pacific oyster (Magallana gigas), the spiny spider crab (Maja sp.

View Article and Find Full Text PDF

The role of tropical small-scale fisheries in trace element delivery for a Small Island Developing State community, the Seychelles.

Mar Pollut Bull

August 2022

Littoral Environnement et Sociétés (LIENSs), UMR 7266 CNRS - La Rochelle Université, 2 rue Olympe de Gouges, 17000 La Rochelle, France; Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France.

The concentrations of 13 trace elements were determined in 1032 muscles of 54 small-scale fisheries species collected from the Seychelles waters between 2013 and 2019. Overall, profiles were dominated by zinc (Zn) > arsenic (As) > iron (Fe) > copper (Cu) > selenium (Se), with the spiny lobsters, spanner crab and octopus exhibiting the highest levels of As, Cu and Zn while fish had higher Fe concentrations. Both taxonomy-dependent processes and ecological factors explained the interspecific differences of trace element profiles observed.

View Article and Find Full Text PDF

A parasitic dinoflagellate of the genus Hematodinium was found off the Pacific coast of Kamchatka in three species of crabs: red king crab Paralithodes camtschaticus, tanner crab Chionoecetes bairdi, and spiny king crab Paralithodes brevipes. This is the first detection of Hematodinium in spiny king crab. The results of the genetic analysis showed that the pathogen found in P.

View Article and Find Full Text PDF

Many studies have characterized class A GPCRs in crustaceans; however, their expression in crustacean chemosensory organs has yet to be detailed. Class A GPCRs comprise several subclasses mediating diverse functions. In this study, using sequence homology, we classified all putative class A GPCRs in two chemosensory organs (antennular lateral flagellum [LF] and walking leg dactyls) and brain of four species of decapod crustaceans (Caribbean spiny lobster Panulirus argus, American lobster Homarus americanus, red-swamp crayfish Procambarus clarkii, and blue crab Callinectes sapidus).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!