Many individuals with multiple sclerosis (MS) experience clinically significant pain, yet the underlying neural mechanisms for MS pain are not understood. Experimental autoimmune encephalomyelitis (EAE) is a well-studied disease in rodents that mimics many clinical and pathological features of MS, including central nervous system inflammation and demyelination. To determine whether EAE is an appropriate model for MS-related pain, nociceptive responses in both male and female SJL mice were measured before and after immunization with myelin proteolipid protein peptide 139-151 (PLP(139-151)) in complete Freund's adjuvant to induce 'active' EAE. To determine if changes in nociception were due to direct effects of encephalitogenic T cells, nociceptive responses in female SJL mice were measured following the transfer of activated, PLP(139-151) specific T cells to induce 'passive' EAE. Both forepaw and tail withdrawal latencies to a radiant heat stimulus were measured. In both active and passive EAE, there was an initial increase in tail withdrawal latency (hypoalgesia) that peaked several days prior to the peak in motor deficits during the acute disease phase. During the chronic disease phase, tail withdrawal latencies decreased and were significantly faster than control latencies for up to 38 days post-immunization. This hyperalgesia was seen in both sexes and in both active and passive EAE models. Forepaw withdrawal latencies remained within 1-2 s of baseline latencies for the entire testing period, indicating that the hypoalgesia and hyperalgesia were most pronounced in clinically affected body regions. These results suggest that both active and passive EAE are useful models of MS-related pain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.pain.2004.03.025 | DOI Listing |
Pharmaceuticals (Basel)
December 2024
Laboratório de Pesquisa em Fármacos, Curso de Farmácia, Departamento de Ciências Biológicas e da Saúde, Universidade Federal do Amapá, Rod. Josmar Chaves Pinto, km 02-Jardim Marco Zero, Macapá-AP, Macapá 68903-419, AP, Brazil.
The present study aimed to evaluate the potential synergy between pharmaceutical formulations containing L. (granulated-CHR OR and injectable nanodispersion-CHR IN) in conjunction with a cannabidiol (CBD)-rich extract of L. (CSE) on experimental pain models in Wistar rats.
View Article and Find Full Text PDFBehav Brain Res
March 2025
Experimental Biology Center, University of Fortaleza, Av. Washington Soares, 1321 - Fortaleza, Ceará, Brazil. Electronic address:
Mimosa tenuiflora ("jurema-preta") is traditionally used in folk medicine for various diseases. The study investigated the neuropharmacological potential of Mimosa tenuiflora bark fraction (FATEM) in adult zebrafish. This included the acute toxicity (LC50) of FATEM (0.
View Article and Find Full Text PDFPhytomedicine
December 2024
School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China; NHC Key Laboratory of Drug Addiction Medicine, School of Forensic Medicine, Kunming Medical University, Kunming, 650500, China; Forensic Biology Identification Laboratory, Judicial Identification Center of Kunming Medical University, Kunming, 650500, China. Electronic address:
Background: Alcohol dependence (AD) is a common psychiatric disorder, often accompanied by anxiety and depression. These comorbidities are linked to disturbances in serotonin (5-HT) metabolism and gut microbiota dysbiosis. Clinical studies suggest that inulin, a prebiotic, can alleviate anxiety and depression in AD patients by affecting the gut microbiota, although the mechanisms remain unclear.
View Article and Find Full Text PDFRes Pharm Sci
August 2024
Physiology-Pharmacology Research Center, Research Institute of Basic Medical Sciences, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
Bone
January 2025
Department of Endocrinology and Metabolism, Hospital of Chengdu Office of People's Government of Tibetan Autonomous Region, Chengdu, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!