Mannan-binding proteins from boar seminal plasma.

J Reprod Immunol

Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 166 37 Praha 6, Czech Republic.

Published: June 2004

The interaction of boar seminal plasma proteins and sperm with yeast mannan was investigated by the enzyme-linked binding assay (ELBA) and specific detection of proteins after SDS electrophoresis and blotting using biotinylated derivative of the polysaccharide. Heparin-binding proteins (especially AQN 1 and DQH proteins) and their aggregated forms showed affinity to yeast mannan. Besides that, these proteins were shown to bind to oviductal epithelium. The mannan-binding activity of boar proteins and sperm was inhibited most efficiently by ovomucoid, ovalbumin and N-glycans released from ovalbumin, but not with d-glucose, d-mannose and their phosphates. On the other hand, yeast mannan inhibited both the interaction of boar seminal plasma and sperm with heparin and the binding of these proteins to porcine oviductal epithelium. Yeast mannan immobilized to divinyl sulfone-activated Sepharose was used for the isolation of mannan-binding proteins. Proteins adsorbed to the immobilized polysaccharide were analyzed by RP-HPLC, SDS electrophoresis and N-terminal amino acid sequencing. AQN and AWN spermadhesins and DQH protein (names are derived from the N-terminal amino acid sequence) were identified as components of the isolated fraction. The results suggest an involvement of mannan-binding proteins in the formation of the sperm oviductal reservoir in pig. The ability of these proteins to interact both the complex d-mannose-containing saccharide structures and the heparin may also play an important role in sperm release from the oviductal reservoir or the capacitation process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jri.2004.01.007DOI Listing

Publication Analysis

Top Keywords

yeast mannan
16
mannan-binding proteins
12
boar seminal
12
seminal plasma
12
proteins
11
interaction boar
8
proteins sperm
8
sds electrophoresis
8
oviductal epithelium
8
n-terminal amino
8

Similar Publications

Yeast fermentation products (YFPs) are known to contain bioactive compounds, such as nutritional metabolites and cell wall polysaccharides (specifically glucan and mannan), which have been demonstrated to exert positive effects on the growth performance and immunity of livestock and poultry. However, the impact of YFPs on intestinal inflammation and microflora composition in pigs infected with typhimurium remains unclear. To investigate this, a total of 18 weaned pigs were divided into three treatment groups: a non-challenged control group (Con), a group challenged with typhimurium (ST), and a group challenged with typhimurium and supplemented with 0.

View Article and Find Full Text PDF

Improving Cellular Protein Content of Based on Adaptive Evolution and Flow Cytometry-Aided High Throughput Screening.

J Agric Food Chem

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.

Enhancing the protein content and production efficiency of is crucial as an alternative protein source. This study screened nongenetically modified yeast strains with high protein content for food ingredient production and explored the underlying mechanisms. Yeast protein levels were found to correlate with RNA, leading to a high-throughput screening method using RNA fluorescence and flow cytometry.

View Article and Find Full Text PDF

The cell wall of human fungal pathogens plays critical roles as an architectural scaffold and as a target and modulator of the host immune response. Although the cell wall of the pathogenic yeast is intensively studied, one of the major fibrillar components in its cell wall, β-1,6-glucan, has been largely neglected. Here, we show that β-1,6-glucan is essential for bilayered cell wall organization, cell wall integrity, and filamentous growth.

View Article and Find Full Text PDF

is considered the most promising large-scale production strain with ethanol as the main product. The fermentation of is generally inhibited under various stress conditions. Various inhibitors in the hydrolysate severely inhibit yeast proliferation and yeast accumulation.

View Article and Find Full Text PDF

Characterization of the exopolysaccharides produced by the industrial yeast Komagataella phaffii.

J Ind Microbiol Biotechnol

January 2024

TurtleTree, 1100 Main Street, Suite 300, Woodland, CA 95695, USA.

Article Synopsis
  • The yeast Komagataella phaffii is favored by biotech startups for producing recombinant proteins due to its safety record and effective production processes, but recent findings reveal a significant polysaccharide accumulation during fermentation that complicates product purity and adds processing costs.
  • The study focused on using K. phaffii strain YB-4290 to produce lactoferrin, uncovering that a considerable amount of carbohydrate (mainly composed of mannose) co-purifies with the protein, indicating challenges in purification methods.
  • Further investigations into carbohydrate sources showed that commonly used strains produce baseline exopolysaccharides, with higher levels occurring under recombinant protein expression, which may inform strategies for improving efficiency in protein production with K. ph
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!