Hox genes code for transcription factors that play a major role in the development of all animal phyla. In invertebrates these genes usually occur as tightly linked cluster, with a few exceptions where the clusters have been dissolved. Only in vertebrates multiple clusters have been demonstrated which arose by duplication from a single ancestral cluster. This history of Hox cluster duplications, in particular during the early elaboration of the vertebrate body plan, is still poorly understood. In this paper we report the results of a PCR survey on genomic DNA of the pacific hagfish Eptatretus stoutii. Hagfishes are one of two clades of recent jawless fishes that are an offshoot of the early radiation of jawless vertebrates. Our data provide evidence for at least 33 distinct Hox genes in the hagfish genome, which is most compatible with the hypothesis of multiple Hox clusters. The largest number, seven, of distinct homeobox fragments could be assigned to paralog group 9, which could imply that the hagfish has more than four clusters. Quartet mapping reveals that within each paralog group the hagfish sequences are statistically more closely related to gnathostome Hox genes than with either amphioxus or lamprey genes. These results support two assumptions about the history of Hox genes: (1) The association of hagfish homeobox sequences with gnathostome sequences suggests that at least one Hox cluster duplication event happened in the stem of vertebrates, i.e., prior to the most recent common ancestor of jawed and jawless vertebrates. (2) The high number of paralog group 9 sequences in hagfish and the phylogenetic position of hagfish suggests that the hagfish lineage underwent additional independent Hox cluster/-gene duplication events.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ympev.2004.03.015DOI Listing

Publication Analysis

Top Keywords

hox genes
16
paralog group
12
hox
9
hagfish
9
independent hox
8
hagfish lineage
8
eptatretus stoutii
8
history hox
8
hox cluster
8
jawless vertebrates
8

Similar Publications

Spatial Genomic Approaches to Investigate HOX Genes in Mouse Brain Tissues.

Methods Mol Biol

January 2025

Yale Center of Molecular and Cellular Oncology, Yale University, New Haven, CT, USA.

Spatial transcriptomic tools are an upcoming and powerful way to investigate targeted gene expression patterns within tissues. These tools offer the unique advantage of visualizing and understanding gene expression while preserving tissue integrity, thereby maintaining the spatial context of genes. Curio is a robust spatial transcriptomic tool that facilitates high throughput comprehensive spatial gene expression analysis across the entir e transcriptome with high efficiency.

View Article and Find Full Text PDF

A Simple Method to Analyze Context- and Tissue-Specific Cis-Regulatory Modulations of Homeotic (HOX) Genes Using ChIP.

Methods Mol Biol

January 2025

Department of Integrative Biology and Physiology, Medical School, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.

Homeobox genes (HOX), the master regulators, deploy a unique set of target genes to coordinate and orchestrate the spatiotemporal development of an organism. HOX encoded transcriptional factors regulate the expression of target genes by binding to the specific sequences on the genome. Chromatin Immunoprecipitation (ChIP) and Chromatin Immunoprecipitation with Sequencing (ChIP-Seq) are widely used to map and understand specific gene locus and global regulatory regions on the genome.

View Article and Find Full Text PDF

Hox genes play a pivotal role during development. Their expression is tightly controlled in a spatiotemporal manner, ensuring that specific body structures develop at the correct locations and times during development. Various genomics approaches have been used to capture temporal and dynamic regulation of Hox gene expression at the nucleosome/chromatin level.

View Article and Find Full Text PDF

Detection of Protein-Nucleic Acid Interaction by Electrophoretic Mobility Shift Assay.

Methods Mol Biol

January 2025

Department of Pharmacology, Yale School of Medicine, Yale University, New Haven, CT, USA.

Electrophoretic Mobility Shift Assay (EMSA) is a powerful technique for studying nucleic acid and protein interactions. This technique is based on the principle that nucleic acid-protein complex and nucleic acid migrate at different rates due to differences in size and charge. Nucleic acid and protein interactions are fundamental to various biological processes, such as gene regulation, replication, transcription, and recombination.

View Article and Find Full Text PDF

The HOX and PBX genes encode transcription factors that have key roles in development and cancer, both independently and as a heterodimer within a complex of proteins that recognizes specific sequences in DNA and can both activate and repress transcription of target genes. Due to functional redundancy amongst HOX proteins, knock down or knock out studies of individual genes often do not result in an altered phenotype. An alternative approach is to target the interaction between HOX and PBX proteins, which is dependent on a conserved hexapeptide region within HOX.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!