The measurement uncertainty of the determination of free and total carbohydrates in soluble (instant) coffee using high-performance anion exchange chromatography with pulsed amperometric detection according to AOAC Method 995.13 and ISO standard 11292 was calculated. This method is important with regard to monitoring several carbohydrate concentrations and is used to assess the authenticity of soluble coffee. We followed the recommendations of the ISO, Eurachem, and Valid Analytical Measurement (VAM) guides: individual uncertainty contributions u(x) were identified, quantified, and expressed as relative standard deviations related to each specific source u(x)/x or RSD(x). Eventually, they were combined to yield the standard uncertainty and the relative standard uncertainty of a given carbohydrate concentration, c, that is respectively u(c) and u(c)/c. As a result of our study, we could demonstrate that the overall repeatability of the carbohydrate determination in duplicate, RSD(r); the repeatability of the integration of the peak area of the carbohydrate standards, RSD(r(area)(ST)); and the uncertainty of the linear calibration model used in our laboratory, RSD (linST), are the most significant contributions to the total uncertainty. The u(c)/c values thus determined differ for each carbohydrate and depend on their concentrations. The least standard uncertainties that can be achieved are about 2.5%. The question of trueness in the total carbohydrate assay (determination of monosaccharides obtained upon hydrolysis of coffee oligo- and polysaccharides) was addressed. For this purpose, we analyzed the data of 2 different collaborative trials in which our laboratory took part.
Download full-text PDF |
Source |
---|
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!