Determination of the 13C/12C ratio of ethanol derived from fruit juices and maple syrup by isotope ratio mass spectrometry: collaborative study.

J AOAC Int

Eurofins Scientific Analytics, Rue Pierre-Adolphe Bobierre, BP42301, F-44323, Nantes Cedex 3, France.

Published: October 2004

A collaborative study of the carbon-13 isotope ratio mass spectrometry (13C-IRMS) method based on fermentation ethanol for detecting some sugar additions in fruit juices and maple syrup is reported. This method is complementary to the site-specific natural isotope fractionation by nuclear magnetic resonance (SNIF-NMR) method for detecting added beet sugar in the same products (AOAC Official Methods 995.17 and 2000.19), and uses the same initial steps to recover pure ethanol. The fruit juices or maple syrups are completely fermented with yeast, and the alcohol is distilled with a quantitative yield (>96%). The carbon-13 deviation (delta13C) of ethanol is then determined by IRMS. This parameter becomes less negative when exogenous sugar derived from plants exhibiting a C4 metabolism (e.g., corn or cane) is added to a juice obtained from plants exhibiting a C3 metabolism (most common fruits except pineapple) or to maple syrup. Conversely, the delta13C of ethanol becomes more negative when exogenous sugar derived from C3 plants (e.g., beet, wheat, rice) is added to pineapple products. Twelve laboratories analyzed 2 materials (orange juice and pure cane sugar) in blind duplicate and 4 sugar-adulterated materials (orange juice, maple syrup, pineapple juice, and apple juice) as Youden pairs. The precision of that method for measuring delta13C was similar to that of other methods applied to wine ethanol or extracted sugars in juices. The within-laboratory (Sr) values ranged from 0.06 to 0.16%o (r = 0.17 to 0.46 percent per thousand), and the among-laboratories (SR) values ranged from 0.17 to 0.26 percent per thousand (R = 0.49 to 0.73 percent per thousand). The Study Directors recommend that the method be adopted as First Action by AOAC INTERNATIONAL.

Download full-text PDF

Source

Publication Analysis

Top Keywords

maple syrup
16
fruit juices
12
juices maple
12
isotope ratio
8
ratio mass
8
mass spectrometry
8
collaborative study
8
delta13c ethanol
8
negative exogenous
8
exogenous sugar
8

Similar Publications

The branched-chain amino acid-related isoleucic acid: recent research advances.

Plant Biol (Stuttg)

January 2025

Department of Environmental Health, Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, Neuherberg, Germany.

Isoleucic acid (ILA) was identified in human patients with maple syrup urine disease (MSUD) half a century ago. MSUD patients, who are defective in the catabolism of branched-chain amino acids (BCAAs), that is, isoleucine, leucine, and valine, have urine with a unique maple syrup odour related to the accumulation of BCAA breakdown products, largely 2-keto acid derivatives and their reduced 2-hydroxy acids including ILA. A decade ago, ILA was identified in Arabidopsis thaliana.

View Article and Find Full Text PDF

α-Ketoisocaproic Acid Disrupts Mitochondrial Bioenergetics in the Brain of Neonate Rats: Molecular Modeling Studies of α-ketoglutarate Dehydrogenase Subunits Inhibition.

Neurochem Res

January 2025

Programa de Pós-Graduação em Ciências Biológicas: Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil.

Brain accumulation of the branched-chain α-keto acids α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) occurs in maple syrup urine disease (MSUD), an inherited intoxicating metabolic disorder caused by defects of the branched-chain α-keto acid dehydrogenase complex. Patients commonly suffer life-threatening acute encephalopathy in the newborn period and develop chronic neurological sequelae of still undefined pathogenesis. Therefore, this work investigated the in vitro influence of pathological concentrations of KIC (5 mM), KMV (1 mM), and KIV (1 mM) on mitochondrial bioenergetics in the cerebral cortex of neonate (one-day-old) rats.

View Article and Find Full Text PDF

Comprehensive Iranian guidelines for the diagnosis and management of maple syrup urine disease: an evidence- and consensus- based approach.

Orphanet J Rare Dis

January 2025

Pediatric Endocrinologist, Metabolic Disorders Research Center, Molecular-cellular Endocrinology & Metabolism Research Institute, Tehran University of medical Sciences, Tehran, Iran.

Maple Syrup Urine Disease (MSUD) disease is a defect in the function of the Branched-chain 2-ketoacid dehydrogenase complex (BCKDH). It is caused by pathogenic biallelic variants in BCKDHA, BCKA decarboxylase, or dihydrolipoamide dehydrogenase. The brain is the major organ involved in MSUD.

View Article and Find Full Text PDF

Objectives: Acrodermatitis dysmetabolica (AD) is a dermatologic manifestation associated with inherited metabolic disorders (IMDs), distinct from acrodermatitis enteropathica, which occurs solely due to zinc deficiency.

Case Presentation: This report presents two pediatric cases: a 30-month-old girl with maple syrup urine disease (MSUD) experiencing AD secondary to severe isoleucine deficiency due to a protein-restricted diet, showing improvement with dietary adjustments, and a 2.5-month-old boy infant with propionic acidemia (PA) who developed AD alongside septic shock, which progressed despite intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!