The question of the potential importance for speciation of large/small population sizes remains open. We compare speciation rates in twelve major taxonomic groups that differ by twenty orders of magnitude in characteristic species abundance (global population number). It is observed that the twenty orders of magnitude's difference in species abundances scales to less than two orders of magnitude's difference in speciation rates. As far as species abundance largely determines the rate of generation of intraspecific endogenous genetic variation, the result obtained suggests that the latter rate is not a limiting factor for speciation. Furthermore, the observed approximate constancy of speciation rates in different taxa cannot be accounted for by assuming a neutral or nearly neutral molecular clock in subdivided populations. Neutral fixation is only relevant in sufficiently small populations with 4N(e)v < 1, which appears an unrealistic condition for many taxa of the smaller organisms. Further research is clearly needed to reveal the mechanisms that could equate the evolutionary pace in taxa with dramatically different population sizes
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02702569 | DOI Listing |
Am J Bot
January 2025
School of Biological Sciences, Washington State University, Pullman, 99164, Washington, USA.
J Evol Biol
December 2024
Department of Mathematics and Statistics, University of Reading, UK.
The time needed for the evolution of mating cues that distinguish species, such as species-specific songs or plumage coloration in birds, has received little attention. Aiming to gain some understanding of the timing of the evolutionary process we here present models of how mating cues evolve in populations split into subpopulations between which there may (parapatry) or may not (allopatry) be migration. Mating cues can be either neutral or directly selected.
View Article and Find Full Text PDFAm J Bot
January 2025
Department of Biology, University of Idaho, Moscow, 83844, Idaho, USA.
Premise: Considering rapidly changing fire regimes due to anthropogenic disturbances to climate and fuel loads, it is crucial to understand the underpinnings driving fire-adapted trait evolution. Among the oldest lineages affected by fire is Coniferae. This lineage occupies a variety of fire prone and non-fire prone habitats across all hemispheres and has four fire-adapted traits: (1) thick bark; (2) serotiny; (3) seedling grass stage; and (4) resprouting ability.
View Article and Find Full Text PDFCurr Med Mycol
May 2024
Department of Microbiology, Dr. Ram Manohar Lohia Institute of Medical Sciences, Lucknow, India.
Background And Purpose: is a recently emerging nosocomial fungal pathogen. Candidemia is the fourth most prevalent cause of bloodstream Infections with mortality rates varying from 5-71%.
Materials And Methods: This was a retrospective study conducted at Uttar Pradesh University of Medical Sciences, Etawah, India, from September 2023 to February 2024.
Chemosphere
January 2025
Faculty of Agronomy and Veterinary Medicine, University of Brasília, 70910-970, Brasília, Federal District, Brazil.
Phosphorus (P) plays an essential role for plant growth, but conventional P sources used in agriculture are finite and non-renewable. As a result, there is a growing need to explore alternative P sources such as sewage sludge (SS) - a P-rich solid waste and valuable renewable resource that is often mismanaged globally. Pyrolysis is a promising technique for managing SS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!