The objective of this study was to determine the effects of in vitro embryo production on angiogenesis and morphometry of the bovine placenta during late gestation. Blastocysts produced in vivo were recovered from superovulated Holstein cows. Blastocysts produced in vitro were obtained after culture of in vitro-matured and -fertilized Holstein oocytes. Single blastocysts from each production system were transferred into heifers. Fetuses and placentas were recovered on Day 222 of gestation (in vivo, n=12; in vitro, n=12). Cotyledonary and caruncular tissues were obtained for quantification of vascular endothelial growth factor (VEGF) and peroxisome proliferator-activated receptor-gamma (PPARgamma) mRNA and protein. Tissue sections of placentomes were prepared for morphometric analysis. Fetuses and placentas were heavier from embryos produced in vitro than from embryos produced in vivo. More placentas from embryos produced in vitro had an excessive volume of placental fluid. There was no effect of treatment on the expression of mRNA for VEGF and PPARgamma in either cotyledonary or caruncular tissues. The expression of VEGF protein in cotyledons and caruncles as well as the expression of PPARgamma protein in cotyledons were not different between the in vitro and in vivo groups. However, caruncles from the in vitro group had increased expression of PPARgamma protein. The total surface area of endometrium was greater for the in vitro group compared with controls. In contrast, the percentage placentome surface area was decreased in the in vitro group. Fetal villi and binucleate cell volume densities were decreased in placentomes from embryos produced in vitro. The proportional tissue volume of blood vessels in the maternal caruncles was increased in the in vitro group. Furthermore, the ratios of blood vessel volume density-to-placentome surface area were increased in the in vitro group. In conclusion, these findings are consistent with the concept that compensatory mechanisms exist in the vascular beds of placentas from bovine embryos produced in vitro.

Download full-text PDF

Source
http://dx.doi.org/10.1095/biolreprod.104.031427DOI Listing

Publication Analysis

Top Keywords

embryos produced
24
produced vitro
20
vitro group
20
vitro
14
produced vivo
12
surface area
12
angiogenesis morphometry
8
morphometry bovine
8
late gestation
8
produced
8

Similar Publications

Alginate-polylysine-alginate (APA) microencapsulated transgenic human amniotic epithelial cells ameliorate fibrosis in hypertrophic scars.

Inflamm Res

January 2025

Department of Burns and Cutaneous Surgery, Xijing Hospital, Air Force Medical University, No.127 Changle West Road, Xincheng District, Xi'an, 710032, Shaanxi, China.

Background: Hypertrophic scar (HS) is a severe skin fibrosis. Transplanting stem cells carrying anti-fibrotic cytokine genes, like interferon-gamma (IFN-γ), is a novel therapeutic strategy. Human amniotic epithelial cells (hAECs) are ideal seed cells and gene vectors.

View Article and Find Full Text PDF

Amphotericin B Encapsulation in Polymeric Nanoparticles: Toxicity Insights via Cells and Zebrafish Embryo Testing.

Pharmaceutics

January 2025

Programa de Pós-Graduação em Pesquisa Translacional em Fármacos e Medicamentos (PPG-PTFM), Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro 21040-900, Brazil.

Amphotericin B (AmB) is a commonly utilized antifungal agent, which is also recommended for the treatment of certain neglected tropical diseases, including leishmaniasis. However, its clinical application is constrained because of its poor oral bioavailability and adverse effects, prompting the investigation of alternative drug delivery systems. Polymeric nanoparticles (PNPs) have gained attention as a potential drug delivery vehicle, providing advantages such as sustained release and enhanced bioavailability, and could have potential as AmB carriers.

View Article and Find Full Text PDF

Characterization of the second type of tubuliform spidroin (TuSp1 variant 2) elucidates the essential role of cysteine within the repetitive domain in liquid-liquid phase separation-mediated silk formation and the mechanical properties of silk fibers.

Int J Biol Macromol

January 2025

Department of Ophthalmology, The Quzhou Affiliated Hospital of Wenzhou Medical University, Quzhou People's Hospital, Quzhou, Zhejiang 324000, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China. Electronic address:

Orb-weaver spiders utilize morphologically differentiated abdominal glands to produce up to seven types of silks throughout their life cycles. Tubuliform silk is unique as it serves to protect developing embryos and hatchlings. However, our current understanding of the relationship between structure and function of tubuliform silk protein remains limited.

View Article and Find Full Text PDF

Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social skills and the presence of repetitive and restricted behaviors and interests. The social behavior of the zebrafish (Danio rerio) makes this organism a valuable tool for modeling ASD in order to explore the social impairment typical of this disorder. In addition to transgenic models, exposure of zebrafish embryos to valproic acid (VPA) has been found to produce ASD-like symptoms.

View Article and Find Full Text PDF

Respiratory syncytial virus (RSV) is a major contributor to morbidity and mortality in infants. We developed an in vitro model of human respiratory infection to study cellular immune responses to RSV in infants, children, and adults. The model includes human lung epithelial A549 cells or human fetal lung fibroblasts infected with a clinical strain of RSV at a multiplicity of infection of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!