Background: Various species of genus Trigonella are important from medical and culinary aspect. Among these, Trigonella foenum-graecum is commonly grown as a vegetable. This anti-diabetic herb can lower blood glucose and cholesterol levels. Another species, Trigonella caerulea is used as food in the form of young seedlings. This herb is also used in cheese making. However, little is known about the genetic variation present in these species. In this report we describe the use of ISSR and RAPD markers to study genetic diversity in both, Trigonella foenum-graecum and Trigonella caerulea.
Results: Seventeen accessions of Trigonella foenum-graecum and nine accessions of Trigonella caerulea representing various countries were analyzed using ISSR and RAPD markers. Genetic diversity parameters (average number of alleles per polymorphic locus, percent polymorphism, average heterozygosity and marker index) were calculated for ISSR, RAPD and ISSR+RAPD approaches in both the species. Dendrograms were constructed using UPGMA algorithm based on the similarity index values for both Trigonella foenum-graecum and Trigonella caerulea. The UPGMA analysis showed that plants from different geographical regions were distributed in different groups in both the species. In Trigonella foenum-graecum accessions from Pakistan and Afghanistan were grouped together in one cluster but accessions from India and Nepal were grouped together in another cluster. However, in both the species accessions from Turkey did not group together and fell in different clusters.
Conclusions: Based on genetic similarity indices, higher diversity was observed in Trigonella caerulea as compared to Trigonella foenum-graecum. The genetic similarity matrices generated by ISSR and RAPD markers in both species were highly correlated (r = 0.78 at p = 0.001 for Trigonella foenum-graecum and r = 0.98 at p = 0.001 for Trigonella caerulea) indicating congruence between these two systems. Implications of these observations in the analysis of genetic diversity and in supporting the possible Center of Origin and/or Diversity for Trigonella are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC514543 | PMC |
http://dx.doi.org/10.1186/1471-2229-4-13 | DOI Listing |
Sci Rep
January 2025
Plant Production Engineering and Genetics Department, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
Abiotic stresses, notably cold stress, significantly influence various aspects of plant development and reproduction. Various approaches have been proposed to counteract the adverse impacts of cold stress on plant productivity. The unique properties of nanoparticles contribute to an enhanced tolerance of plants to challenging conditions.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
PG & Research Department of Physics, AVVM Sri Pushpam College (Autonomous), [Affiliated to Bharathidasan University, Tiruchirappalli], Poondi, Thanjavur 613503, Tamil Nadu, India. Electronic address:
Development of bio-supported photocatalysts has become a pressing need in the field of environmental remediation. This work reports the synthesis of bio-enzyme (from banana peels) inherited (ZnO/g-CN) nanocomposite by simple soft chemical method and its photocatalytic degradation ability against the mixed dye (Methylene blue (MB) + Rhodamine-B (RhB)) under UV irradiation. Synthesized nanoparticles were characterized using experimental techniques XRD, FESEM, TEM, EDAX, XPS, UV-vis-NIR spectroscopy and FTIR.
View Article and Find Full Text PDF3 Biotech
February 2025
Catalysis and Nanomaterials Research Laboratory, Department of Chemistry, Loyola College, Chennai, Tamil Nadu 600034 India.
Unlabelled: The persistent challenge posed by antibiotic-resistant bacteria and tuberculosis necessitates innovative approaches to antimicrobial treatment. This study explores the synthesis and characterization of NiZrO₃ nanoparticles integrated with graphene nanoplatelets (GNP) and multi-walled carbon nanotubes (MWCNT), using a microwave-assisted green synthesis route, employing fenugreek () seed extract as a gelling agent. The synthesised nanocomposites were systematically analyzed using XRD, FT-IR, Raman spectroscopy, HR-SEM and HR TEM analysis to assess structural, optical, and morphological properties.
View Article and Find Full Text PDFJ Vet Diagn Invest
January 2025
Large Animal Clinical Sciences, Western College of Veterinary Medicine, Saskatoon, Saskatchewan, Canada.
An apparent outbreak of fenugreek forage toxicosis occurred in a beef cattle herd near Moose Jaw, Saskatchewan in February-May 2022. The herd had consumed fenugreek hay from late fall to early winter. Clinical signs included various degrees of weakness, ataxia, knuckling, walking on hocks, and recumbency.
View Article and Find Full Text PDFPharmaceuticals (Basel)
December 2024
Department of Biology, College of Science, Qassim University, Buraydah 51452, Saudi Arabia.
In Saudi Arabia, numerous plant species with promising medicinal properties are cultivated, widely traded, and commonly utilized in traditional medicine, including fenugreek (). This study aimed to comprehensively assess the phytochemical composition and antimicrobial potential of the Saudi cultivar of fenugreek using an integrative approach combining in vitro and in silico methodologies. A comprehensive investigation was conducted on the ethanol extract of fenugreek seeds, assessing its antibacterial, antifungal, properties.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!