Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Snake venom is a complex mixture of proteins and peptides, and a number of studies have described the biological properties of several venomous proteins. Nevertheless, a complete proteomic profile of venom from any of the many species of snake is not available. Proteomics now makes it possible to globally identify proteins from a complex mixture. To assess the venom proteomic profiles from Naja naja atra and Agkistrodon halys, snakes common to southern China, we used a combination strategy, which included the following four different approaches: (i) shotgun digestion plus HPLC with ion-trap tandem MS, (ii) one-dimensional SDS/PAGE plus HPLC with tandem MS, (iii) gel filtration plus HPLC with tandem MS and (iv) gel filtration and 2DE (two-dimensional gel electrophoresis) plus MALDI-TOF (matrix-assisted laser desorption ionization-time-of-flight) MS. In the present paper, we report the novel identification of 124 and 74 proteins and peptides in cobra and viper venom respectively. Functional analysis based upon toxin categories reveals that, as expected, cobra venom has a high abundance of cardio- and neurotoxins, whereas viper venom contains a significant amount of haemotoxins and metalloproteinases. Although approx. 80% of gel spots from 2DE displayed high-quality MALDI-TOF-MS spectra, only 50% of these spots were confirmed to be venom proteins, which is more than likely to be a result of incomplete protein databases. Interestingly, these data suggest that post-translational modification may be a significant characteristic of venomous proteins.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1134095 | PMC |
http://dx.doi.org/10.1042/BJ20040354 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!