Download full-text PDF

Source
http://dx.doi.org/10.1093/jn/134.8.2031SDOI Listing

Publication Analysis

Top Keywords

relationship electrolyte
4
electrolyte apparent
4
apparent absorption
4
absorption fecal
4
fecal quality
4
quality adult
4
adult dogs
4
dogs differing
4
differing body
4
body size
4

Similar Publications

Wi-Fi signal for soil moisture sensing.

Environ Monit Assess

December 2024

Division of Soil Science, Institute of Geoecology, TU Braunschweig, Brunswick, Germany.

Measuring soil moisture is essential in various scientific and engineering disciplines. Over recent decades, numerous technologies have been employed for in situ monitoring of soil moisture. Currently, dielectric-based sensors are the most popular measurement technology and provide acceptable accuracy for various measurement purposes.

View Article and Find Full Text PDF

Heavy metal contamination of drinking water, primarily driven by industrial activities, represents a critical challenge, with implications for human health and environmental safety. Gujranwala is an industrial and thickly populated city. The current study aimed to assess and compare heavy metal contamination levels in drinking water from five industrial areas and evaluate their potential impacts on human health.

View Article and Find Full Text PDF

Towards a better knowledge of U(VI) speciation in weakly alkaline solution through an in-depth study of U(VI) intrinsic colloids.

Chemosphere

December 2024

Institut de Chimie Séparative de Marcoule, CEA, UMR 5257 CEA-CNRS-UM-ENSCM, 30207 Bagnols-sur-Cèze, France. Electronic address:

The formation of U(VI) intrinsic colloids has a non-negligible impact on the dissemination of actinides in the environment. It is therefore essential to better identify their nature, formation conditions, and stability domains. These specific points are especially important since the behavior of these elements in environment is generally estimated by geochemical transport modeling.

View Article and Find Full Text PDF

Copper-cobalt diatomic bifunctional oxygen electrocatalysts based on three-dimensional porous nitrogen-doped carbon frameworks for high-performance zinc-air batteries.

J Colloid Interface Sci

December 2024

State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300401, PR China; Engineering Research Center of Ministry of Education for Intelligent Rehabilitation Device and Detection Technology, Hebei University of Technology, Tianjin 300401, PR China; Hebei Key Laboratory of Smart Sensing and Human-Robot Interaction, Hebei University of Technology, Tianjin 300401, PR China; School of Mechanical Engineering, Hebei University of Technology, 5340 Xiping Road, Beichen District, Tianjin 300401, PR China. Electronic address:

Transition-metal-loaded carbon-based electrocatalysts are promising alternatives to conventional precious metal electrocatalysts for the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) in high-performance zinc-air batteries. However, efficiently doping transition-metal single atoms onto carbon-based frameworks is a significant challenge. Herein, an improved template-sacrificing method combining a two-step carbonization process is proposed to fabricate Cu/Co diatomic sites coanchored on a three-dimensional nitrogen-doped carbon-based framework.

View Article and Find Full Text PDF

Despite the widespread use of currently available serum phosphate management options, elevated serum phosphate is common in patients with end-stage kidney disease on dialysis. Characteristics of currently available phosphate binders that lead to poor patient experiences such as large drug volume size of required daily medication (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!