A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Electrophysiological and molecular characterization of the inward rectifier in juxtaglomerular cells from rat kidney. | LitMetric

Renin, the key element of the renin-angiotensin-aldosterone system, is mainly produced by and stored in the juxtaglomerular cells in the kidney. These cells are situated in the media of the afferent arteriole close to the vessel pole and can transform into smooth muscle cells and vice versa. In this study, the electrophysiological properties and the molecular identity of the K+ channels responsible for the resting membrane potential (approximately -60 mV) of the juxtaglomerular cells were examined. In order to increase the number of juxtaglomerular cells, afferent arterioles from NaCl-depleted rats were used, and > 90% of the afferent arterioles were renin positive at the distal end of the arteriole. Whole-cell and cell-attached single-channel patch-clamp experiments showed that juxtaglomerular cells are endowed with a strongly inwardly rectifying K+ channel (Kir). The channel was highly sensitive to inhibition by Ba2+ (inhibition constant 37 microM at 0 mV), but relatively insensitive to Cs+ and, with 142 mM K+ in the pipette, had a single-channel conductance of 31.5 pS. Immunocytochemical studies showed the presence of Kir2.1 but no signal for Kir2.2 in the media of the afferent arteriole. In PCR analyses using isolated juxtaglomerular cells, the mRNA for Kir2.1 and Kir2.2 was detected. Collectively, the results show that Kir2.1 is the dominant component of the channel. The current carried by these channels plays a decisive role in setting the membrane potential of juxtaglomerular cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1665251PMC
http://dx.doi.org/10.1113/jphysiol.2004.070359DOI Listing

Publication Analysis

Top Keywords

juxtaglomerular cells
28
cells
9
media afferent
8
afferent arteriole
8
membrane potential
8
afferent arterioles
8
juxtaglomerular
7
electrophysiological molecular
4
molecular characterization
4
characterization rectifier
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!