Previous work suggests that normal GLUT4 content is sufficient for increases in muscle glucose uptake (MGU) during hyperinsulinemia, because glucose phosphorylation is the more formidable barrier to insulin-stimulated MGU. It was hypothesized that a partial ablation of GLUT4 would not impair insulin-stimulated MGU when glucose phosphorylation capacity is normal but would do so when glucose phosphorylation capacity is increased. Thus, chow-fed C57BL/6J mice with a GLUT4 partial knockout (GLUT4(+/-)), hexokinase II overexpression (HK(Tg)), or both (HK(Tg) + GLUT4(+/-)) and wild-type littermates were studied. Carotid artery and jugular vein catheters were implanted for sampling and infusions at 4 months of age. After a 5-d recovery, 5-h fasted mice (n = 8-11/group) underwent a 120-min saline infusion or insulin clamp (4 mU/kg.min insulin with glucose maintained at 165 mg/dl) and received a 2-deoxy[(3)H]glucose bolus to provide an index of MGU (R(g)) for the soleus, gastrocnemius, and superficial vastus lateralis. Basal R(g) from all muscles studied from saline-infused mice were not changed by any of the genetic modifications. HK(Tg) mice had augmented insulin-stimulated R(g) in all muscles studied compared with remaining genotypes. Insulin-stimulated R(g) was not impaired in any of the muscles studied from GLUT4(+/-) mice. However, the enhanced insulin-stimulated R(g) created by HK overexpression was ablated in HK(Tg) + GLUT4(+/-) mice. Thus, a 50% reduction of normal GLUT4 content in the presence of normal HK activity does not impair insulin-stimulated MGU. However, when the glucose phosphorylation barrier is lowered by HK overexpression, GLUT4 availability becomes a limitation to insulin-stimulated MGU.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1210/en.2004-0465 | DOI Listing |
Iran J Basic Med Sci
January 2025
School of Physical Education, Department of Sports Health, Central China Normal University, Wuhan, 430079, China.
Objectives: This study aimed to evaluate the effects of pre-conditioning exercise on body lipid metabolism, leptin secretion, and the downstream pathways at the early stage of type 2 diabetes mellitus (T2DM).
Materials And Methods: The T2DM model was established using an 8-week high-sugar, high-fat diet combined. The T2DM model was established using an 8-week high-sugar, high-fat diet combined with streptozocin (STZ) injection.
Diabetol Int
January 2025
Division of Diabetes and Endocrinology, Department of Internal Medicine, Kobe University Graduate School of Medicine, 7-5-2, Kusunoki-cho, Chuo-ku, Kobe, 650-0017 Japan.
Unlabelled: Endoplasmic reticulum (ER) stress due to obesity or systemic insulin resistance is an important pathogenic factor that could lead to pancreatic β-cell failure. We have previously reported that CCAAT/enhancer-binding protein β (C/EBPβ) is highly induced by ER stress in pancreatic β cells. Moreover, its accumulation hampers the response of these cells to ER stress by inhibiting the induction of the molecular chaperone 78 kDa glucose-regulated protein (GRP78).
View Article and Find Full Text PDFCommun Biol
January 2025
Xianghu Laboratory, College of Life Sciences, Zhejiang University, Hangzhou, China.
Carbon catabolite repression (CCR) and de-repression (CCDR) are critical for fungal development and pathogenicity, yet the underlying regulatory mechanisms remain poorly understood in pathogenic fungi. Here, we identify a serine/threonine protein phosphatase catalytic subunit, Pp4c, as essential for growth, conidiation, virulence, and the utilization of carbohydrates and lipids in Magnaporthe oryzae. We demonstrate that the protein phosphatase 4 complex (Pp4c and Smek1 subunits), the AMP-activated protein kinase (AMPK) Snf1, and the transcriptional regulators CreA (repressor) and Crf1 (activator) collaboratively regulate the utilization of non-preferred carbon sources.
View Article and Find Full Text PDFLife Metab
February 2025
Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore.
Glucose-6-phosphate dehydrogenase (G6PD) is the rate-limiting enzyme in the pentose phosphate pathway (PPP) in glycolysis. Glucose metabolism is closely implicated in the regulation of mitophagy, a selective form of autophagy for the degradation of damaged mitochondria. The PPP and its key enzymes such as G6PD possess important metabolic functions, including biosynthesis and maintenance of intracellular redox balance, while their implication in mitophagy is largely unknown.
View Article and Find Full Text PDFLife Metab
August 2024
Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China.
Bromodomain and extra-terminal domain (BET) proteins, which function partly through MYC proto-oncogene (MYC), are critical epigenetic readers and emerging therapeutic targets in cancer. Whether and how BET inhibition simultaneously induces metabolic remodeling in cancer cells remains unclear. Here we find that even transient BET inhibition by JQ-1 and other pan-BET inhibitors (pan-BETis) blunts liver cancer cell proliferation and tumor growth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!