Phylogenetic relationships of typical antbirds (Thamnophilidae) and test of incongruence based on Bayes factors.

BMC Evol Biol

Department of Vertebrate Zoology and Molecular Systematics Laboratory, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden.

Published: July 2004

Background: The typical antbirds (Thamnophilidae) form a monophyletic and diverse family of suboscine passerines that inhabit neotropical forests. However, the phylogenetic relationships within this assemblage are poorly understood. Herein, we present a hypothesis of the generic relationships of this group based on Bayesian inference analyses of two nuclear introns and the mitochondrial cytochrome b gene. The level of phylogenetic congruence between the individual genes has been investigated utilizing Bayes factors. We also explore how changes in the substitution models affected the observed incongruence between partitions of our data set.

Results: The phylogenetic analysis supports both novel relationships, as well as traditional groupings. Among the more interesting novel relationship suggested is that the Terenura antwrens, the wing-banded antbird (Myrmornis torquata), the spot-winged antshrike (Pygiptila stellaris) and the russet antshrike (Thamnistes anabatinus) are sisters to all other typical antbirds. The remaining genera fall into two major clades. The first includes antshrikes, antvireos and the Herpsilochmus antwrens, while the second clade consists of most antwren genera, the Myrmeciza antbirds, the "professional" ant-following antbirds, and allied species. Our results also support previously suggested polyphyly of Myrmotherula antwrens and Myrmeciza antbirds. The tests of phylogenetic incongruence, using Bayes factors, clearly suggests that allowing the gene partitions to have separate topology parameters clearly increased the model likelihood. However, changing a component of the nucleotide substitution model had much higher impact on the model likelihood.

Conclusions: The phylogenetic results are in broad agreement with traditional classification of the typical antbirds, but some relationships are unexpected based on external morphology. In these cases their true affinities may have been obscured by convergent evolution and morphological adaptations to new habitats or food sources, and genera like Myrmeciza antbirds and the Myrmotherula antwrens obviously need taxonomic revisions. Although, Bayes factors seem promising for evaluating the relative contribution of components to an evolutionary model, the results suggests that even if strong evidence for a model allowing separate topology parameters is found, this might not mean strong evidence for separate gene phylogenies, as long as vital components of the substitution model are still missing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC509417PMC
http://dx.doi.org/10.1186/1471-2148-4-23DOI Listing

Publication Analysis

Top Keywords

typical antbirds
16
bayes factors
16
myrmeciza antbirds
12
phylogenetic relationships
8
antbirds
8
antbirds thamnophilidae
8
genera myrmeciza
8
myrmotherula antwrens
8
separate topology
8
topology parameters
8

Similar Publications

Background: Thamnophilidae birds are the result of a monophyletic radiation of insectivorous Passeriformes. They are a diverse group of 225 species and 45 genera and occur in lowlands and lower montane forests of Neotropics. Despite the large degree of diversity seen in this family, just four species of Thamnophilidae have been karyotyped with a diploid number ranging from 76 to 82 chromosomes.

View Article and Find Full Text PDF

When David beats Goliath: the advantage of large size in interspecific aggressive contests declines over evolutionary time.

PLoS One

December 2015

Department of Biology and Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado, United States of America.

Body size has long been recognized to play a key role in shaping species interactions. For example, while small species thrive in a diversity of environments, they typically lose aggressive contests for resources with larger species. However, numerous examples exist of smaller species dominating larger species during aggressive interactions, suggesting that the evolution of traits can allow species to overcome the competitive disadvantage of small size.

View Article and Find Full Text PDF

Many social animals use long-distance signals to attract mates and defend territories. They face the twin challenges of discriminating between species to identify conspecific mates, and between individuals to recognize collaborators and competitors. It is therefore often assumed that long-distance signals are under strong selection for species-specificity and individual distinctiveness, and that this will drive character displacement when closely related species meet, particularly in noisy environments.

View Article and Find Full Text PDF

One of the most novel foraging strategies in Neotropical birds is army-ant-following, in which birds prey upon arthropods and small vertebrates flushed from the forest floor by swarm raids of the army-ant Eciton burchellii. This specialization is most developed in the typical antbirds (Thamnophilidae) which are divisible into three specialization categories: (1) those that forage at swarms opportunistically as army-ants move through their territories (occasional followers), (2) those that follow swarms beyond their territories but also forage independently of swarms (regular followers), and (3) those that appear incapable of foraging independently of swarms (obligate followers). Although army-ant-following is one of the great spectacles of tropical forests, basic questions about its evolution remain unaddressed.

View Article and Find Full Text PDF

Phylogenetic relationships of typical antbirds (Thamnophilidae) and test of incongruence based on Bayes factors.

BMC Evol Biol

July 2004

Department of Vertebrate Zoology and Molecular Systematics Laboratory, Swedish Museum of Natural History, SE-104 05, Stockholm, Sweden.

Background: The typical antbirds (Thamnophilidae) form a monophyletic and diverse family of suboscine passerines that inhabit neotropical forests. However, the phylogenetic relationships within this assemblage are poorly understood. Herein, we present a hypothesis of the generic relationships of this group based on Bayesian inference analyses of two nuclear introns and the mitochondrial cytochrome b gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!