The influence of the detailed design of the sidewall region upon the over-all band-broadening in microfabricated packed-bed or collocated monolithic support structure (COMOSS) columns has been investigated using computational fluid dynamics (CFD) simulation techniques. It is shown that, under unretained solute conditions, very small structural variations of the order of only 5% of the particle diameter can give rise to a 4-fold increase of the band-broadening. A comprehensive study has been made to quantify this effect as a function of the fluid velocity, the particle diameter, the channel widths, and of course, the sidewall region design. Because the sidewall effect can be fully attributed to a mismatch between the flow rates in the column center and in the sidewall region, it is fortunately also quite straightforward to avoid it. A very simple design, yielding band-broadening values identical to that of a hypothetical sidewall-less column for all possible values of the flow velocity, the particle diameter, or the channel width is proposed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/ac049930h | DOI Listing |
Glob Chang Biol
January 2025
State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China.
The Qinghai-Tibet Plateau (QTP) has an extensive frozen soil distribution and intense geological tectonic activity. Our surveys reveal that Qinghai-Tibet Plateau earthquakes can not only damage infrastructure but also significantly impact carbon dioxide emissions. Fissures created by earthquakes expose deep, frozen soils to the air and, in turn, accelerate soil carbon emissions.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
School of Mechanical and Power Engineering, Henan Polytechnic University, Jiaozuo 454003, China.
Difficult-to-cut titanium matrix composites (TMCs) are widely used in the aerospace, automotive, and defense sectors due to their excellent physical properties. Electrochemical mill grinding (ECMG) can achieve the processing effects of electrochemical milling and electrochemical grinding using the same tool, which has the potential to complete the rough and finish machining of TMCs in succession. However, in the rough machining stage, the bottom of the slot becomes concave due to the inevitable stray corrosion, leading to poor flatness, which increases the machining allowance for subsequent finish machining.
View Article and Find Full Text PDFSci Rep
January 2025
College of Physics and Electronic Information, Baicheng Normal University, Jilin, 137000, China.
An innovative GaN trench MOSFET featuring an ultra-low gate-drain charge (Q) is proposed, with its operational mechanisms thoroughly investigated using TCAD simulations. This novel MOSFET design introduces a triple-shield structure (BPSG-MOS) comprising three critical components: (1) a grounded split gate (SG), (2) a P+ shield region (PSR), and (3) a semi-wrapped BP layer that extends the P-shield beneath the gate and along the sidewalls of the trench gate. Both the SG and PSR effectively reduce gate-drain coupling, transforming most of the gate-drain capacitance (C) into a series combination of gate-source capacitance (C) and drain-source capacitance (C).
View Article and Find Full Text PDFMicrosyst Nanoeng
December 2024
The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, China.
With the drastic reduction of the TSV diameter leading to a critical dimension comparable to the Cu-filled grain size, the grain condition strongly influences the thermo-mechanical behavior of the TSV. In this work, the TSV-Cu cross-section with different grain sizes is characterized by EBSD, confirming that the sidewall grain size (0.638-1.
View Article and Find Full Text PDFMicromachines (Basel)
October 2024
Key Laboratory of Luminescence Science and Technology, Chinese Academy of Sciences, Changchun 130033, China.
Since surface relief transmission gratings have very strict requirements on operators and use environment, according to the semiconductor laser external cavity spectral beam combining system, this paper proposes a design scheme for a semiconductor laser array spectral beam combining system based on the grating-external cavity. The finite element approach was used to create a wideband, high-efficiency fill-in multilayer dielectric transmission grating structure for a high-power spectrum beam combining system. The incidence angle, ridge height, duty cycle, and sidewall inclination angle of the transmission grating were tuned and evaluated, and a link between the transmission grating's diffraction efficiency and grating characteristics was discovered.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!