Background: Measurements of the systematic variation of backscattered ultrasonic energy from myocardium during the heart cycle (cyclic variation) have been successfully used to characterize a wide spectrum of cardiac pathologies in large animal models and human subjects. The purpose of this study was to evaluate the feasibility of extending cyclic variation measurements to the study of genetically manipulated mouse models of cardiac diseases as a method for developing further insights into the disease-altered properties of the myocardium and its characterization with ultrasound.
Methods: Parasternal long-axis images of the heart were obtained in 9 wild-type mice under light anesthesia using a commercial imaging system with a 15-MHz nominal center frequency linear array. Images of a tissue-mimicking phantom and the mouse hearts were obtained for a series of specific receiver gains for each of a series of specific dynamic range settings. Analyses of these data formed the basis for gray-scale image calibration. Cyclic variation measurements were obtained by determining the average gray-scale value for a region of interest placed in the midmyocardium of the posterior wall for each frame acquired during 4 cardiac cycles and converting these mean gray-scale values to backscatter values expressed in decibels using the determined calibration. Results are expressed in terms of the magnitude and time delay of cyclic variation. To evaluate repeatability of these measurements the same group of mice underwent the identical imaging protocol 2 weeks after the first study.
Results: The mean magnitude of cyclic variation was found to be 4.6 +/- 0.2 dB with a corresponding normalized time delay of 1.02 +/- 0.03 for data averaged over all dynamic range settings. There was no significant difference among results obtained with each of the dynamic range settings. A comparison of these results with those from data acquired 2 weeks after the initial study showed no significant difference.
Conclusion: This study represents the first reported measurement of cyclic variation in mice and demonstrates that reliable cyclic variation measurements can be obtained among individual animals and over different time points and, hence, forms the basis for subsequent investigations addressing specific cardiac pathologies and effects arising from myocardial anisotropy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.echo.2004.04.035 | DOI Listing |
Nanoscale
January 2025
Department of Materials Science and Engineering, University of Crete, 700 13 Heraklion, Crete, Greece.
During the last decades, the use of innovative hybrid materials in energy storage devices has led to notable advances in the field. However, further enhancement of their electrochemical performance faces significant challenges nowadays, imposed by the materials used in the electrodes and the electrolyte. Such problems include the high solubility of both the organic and the inorganic anode components in the electrolyte as well as the limited intrinsic electronic conductivity and substantial volume variation of the materials during cycling.
View Article and Find Full Text PDFMed Devices (Auckl)
January 2025
Faculty of Geological Engineering, Universitas Padjadjaran, Jatinangor, Jawa Barat, 45363, Indonesia.
Background: Biomarkers are essential tools for diagnosing diseases. Saliva, as a human fluid, effectively reflects the body's condition due to its rich composition. Analyzing saliva components allows for noninvasive, cost-effective, and time-efficient screening and diagnosis.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Nuclear Research Centre of Birine, Ain Oussera, Djelfa 17200, Algeria. Electronic address:
There is a need for advanced developments to battle aggressive breast cancer variations and to address treatment resistance. In cancer therapy, ZnO nanoparticles (NPs) possess the ability to selectively and effectively induce apoptosis in cancer cells. There is an urgent necessity to create novel anti-cancer therapies, and recent studies indicate that ZnO nanoparticles have significant promise.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Enikolopov Institute of Synthetic Polymeric Materials of Russian Academy of Sciences (ISPM RAS), Profsoyuznaya Str. 70, 117393 Moscow, Russia.
To achieve the actuation of silicone-based foamed composites, a liquid-gas phase transition of the liquid captured in its pores is employed. The uncertainty of key parameters for a single or sequential open-air performance of such soft actuators limits their application. To define the main characteristics of the composites, in this work, two functions of the liquid there were separated: the pore-forming agent (FPA) and working liquid (WL).
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Biological Sciences, College of Natural Sciences, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju, 61186, Republic of Korea. Electronic address:
Diving birds, particularly those sharing coastal habitats with fishing grounds, are at risk from oil pollution. Despite documented cases of bird mortality, the specific role of oil pollution in these death remains unclear. To address this knowledge gap, this study examined polycyclic aromatic hydrocarbon (PAH) contamination, its sources, and its impact on loon health.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!