The mouse vascular smooth muscle alpha-actin (SMA) gene enhancer is activated in fibroblasts by transforming growth factor beta1 (TGFbeta1), a potent mediator of myofibroblast differentiation and wound healing. The SMA enhancer contains tandem sites for the Sp1 transcriptional activator protein and Puralpha and beta repressor proteins. We have examined dynamic interplay between these divergent proteins to identify checkpoints for possible control of myofibroblast differentiation during chronic inflammatory disease. A novel element in the SMA enhancer named SPUR was responsible for both basal and TGFbeta1-dependent transcriptional activation in fibroblasts and capable of binding Sp1 and Pur proteins. A novel Sp1:Pur:SPUR complex was dissociated when SMA enhancer activity was increased by TGFbeta1 or Smad protein overexpression. Physical association of Pur proteins with Smad2/3 was observed as was binding of Smads to an upstream enhancer region that undergoes DNA duplex unwinding in TGFbeta1-activated myofibroblasts. Purbeta repression of the SMA enhancer could not be relieved by TGFbeta1, whereas repression mediated by Puralpha was partially rescued by TGFbeta1 or overexpression of Smad proteins. Interplay between Pur repressor isoforms and Sp1 and Smad coactivators may regulate SMA enhancer output in TGFbeta1-activated myofibroblasts during episodes of wound repair and tissue remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC519147PMC
http://dx.doi.org/10.1091/mbc.e04-04-0348DOI Listing

Publication Analysis

Top Keywords

sma enhancer
20
vascular smooth
8
smooth muscle
8
muscle alpha-actin
8
transforming growth
8
growth factor
8
dynamic interplay
8
interplay pur
8
pur repressor
8
repressor proteins
8

Similar Publications

Keloids are disfiguring proliferative scars, and their pathological mechanisms are still unclear. We have previously established that FoxC1 plays a significant role in rheumatoid arthritis and osteoarthritis, but its molecular mechanisms in pathological scar formation remain elusive. In this study, we analyzed keloid tissue characteristics using HE staining and immunohistochemistry, revealing abnormal expression of FoxC1 and Notch3 in keloids.

View Article and Find Full Text PDF

MIF/CD74 axis in hepatic stellate cells mediates HBV-related liver fibrosis.

Int Immunopharmacol

January 2025

Department of Transplantation Immunology, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin Province 130061, China. Electronic address:

Chronic hepatitis B virus (HBV) infection is a major risk factor for liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Despite advances in understanding HBV-related liver diseases, effective therapeutic strategies remain limited. Macrophage migration inhibitory factor (MIF) has been implicated in various inflammatory and fibrotic conditions, but its role in HBV-induced liver fibrosis has not been fully explored.

View Article and Find Full Text PDF

Pulmonary fibrosis is characterized by progressive lung scarring, leading to a decline in lung function and an increase in morbidity and mortality. This study leverages single-cell sequencing and machine learning to unravel the complex cellular and molecular mechanisms underlying pulmonary fibrosis, aiming to improve diagnostic accuracy and uncover potential therapeutic targets. By analyzing lung tissue samples from pulmonary fibrosis patients, we identified distinct cellular phenotypes and gene expression patterns that contribute to the fibrotic process.

View Article and Find Full Text PDF

FSTL1 aggravates high glucose-induced oxidative stress and transdifferentiation in HK-2 cells.

Sci Rep

January 2025

Medical Imaging Center, First Affiliated Hospital, Jiamusi University, Jiamusi, Heilongjiang, China.

Chronic hyperglycemia, a hallmark of diabetes, can trigger inflammatory responses in the kidney, leading to diabetic nephropathy (DN). Follistatin-like protein 1 (FSTL1) has emerged as a potential therapeutic target in various kidney diseases. This study investigated the effect of high glucose on FSTL1 expression and its role in oxidative stress and cellular transdifferentiation injury in HK-2 human proximal tubule epithelial cells, a model of DN.

View Article and Find Full Text PDF

A synthetic methylotroph achieves accelerated cell growth by alleviating transcription-replication conflicts.

Nat Commun

January 2025

School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wux, China.

Microbial utilization of methanol for valorization is an effective way to advance green bio-manufacturing technology. Although synthetic methylotrophs have been developed, strategies to enhance their cell growth rate and internal regulatory mechanism remain underexplored. In this study, we design a synthetic methanol assimilation (SMA) pathway containing only six enzymes linked to central carbon metabolism, which does not require energy and carbon emissions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!