Kynurenic acid (KYNA) can act as an endogenous modulator of excitatory neurotransmission and has been implicated in the pathogenesis of several neurological and psychiatric diseases. To evaluate its role in the brain, we disrupted the murine gene for kynurenine aminotransferase II (KAT II), the principal enzyme responsible for the synthesis of KYNA in the rat brain. mKat-2(-/-) mice showed no detectable KAT II mRNA or protein. Total brain KAT activity and KYNA levels were reduced during the first month but returned to normal levels thereafter. In contrast, liver KAT activity and KYNA levels in mKat-2(-/-) mice were decreased by >90% throughout life, though no hepatic abnormalities were observed histologically. KYNA-associated metabolites kynurenine, 3-hydroxykynurenine, and quinolinic acid were unchanged in the brain and liver of knockout mice. mKat-2(-/-) mice began to manifest hyperactivity and abnormal motor coordination at 2 weeks of age but were indistinguishable from wild type after 1 month of age. Golgi staining of cortical and striatal neurons revealed enlarged dendritic spines and a significant increase in spine density in 3-week-old mKat-2(-/-) mice but not in 2-month-old animals. Our results show that gene targeting of mKat-2 in mice leads to early and transitory decreases in brain KAT activity and KYNA levels with commensurate behavioral and neuropathological changes and suggest that compensatory changes or ontogenic expression of another isoform may account for the normalization of KYNA levels in the adult mKat-2(-/-) brain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC479723 | PMC |
http://dx.doi.org/10.1128/MCB.24.16.6919-6930.2004 | DOI Listing |
Exp Neurol
January 2006
Maryland Psychiatric Research Center, University of Maryland School of Medicine, P.O. Box 21247, Baltimore, MD 21228, USA.
Excessive activation of NMDA receptors results in excitotoxic nerve cell loss, which is believed to play a critical role in the pathophysiology of Huntington's disease (HD) and several other catastrophic neurodegenerative diseases. Kynurenic acid (KYNA), a neuroinhibitory tryptophan metabolite, has neuroprotective properties and may serve as an endogenous anti-excitotoxic agent. This hypothesis was tested in the striatum, using mice with a targeted deletion of kynurenine aminotransferase II (KAT II), a major biosynthetic enzyme of KYNA in the mammalian brain.
View Article and Find Full Text PDFMol Cell Biol
August 2004
Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
Kynurenic acid (KYNA) can act as an endogenous modulator of excitatory neurotransmission and has been implicated in the pathogenesis of several neurological and psychiatric diseases. To evaluate its role in the brain, we disrupted the murine gene for kynurenine aminotransferase II (KAT II), the principal enzyme responsible for the synthesis of KYNA in the rat brain. mKat-2(-/-) mice showed no detectable KAT II mRNA or protein.
View Article and Find Full Text PDFJ Neurosci
May 2004
Department of Pharmacology and Experimental Therapeutics, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA.
It has been postulated that endogenous kynurenic acid (KYNA) modulates alpha7* nicotinic acetylcholine receptor (nAChR) and NMDA receptor activities in the brain.a To test this hypothesis, alpha7* nAChR and NMDA receptor functions were studied in mice with a targeted null mutation in the gene encoding kynurenine aminotransferase II (mKat-2-/- mice), an enzyme responsible for brain KYNA synthesis. At 21 postnatal days, mKat-2-/- mice had lower hippocampal KYNA levels and higher spontaneous locomotor activity than wild-type (WT) mice.
View Article and Find Full Text PDFMamm Genome
September 1999
Genetics and Molecular Biology Branch, National Human Genome Research Institute, Building 49, Room 3A26, 49 Convent Drive MSC 4442, National Institutes of Health, Bethesda, Maryland 20892-4442, USA.
Decreased levels of the endogenous neuroprotectant kynurenic acid (KYNA) have been observed in the brain of Huntington's Disease (HD) patients and may be related to neuronal loss in this disorder. This reduction may be caused by a dysfunction of kynurenine aminotransferase II (KAT II), the major enzyme responsible for the synthesis of KYNA in the brain. Towards understanding the role of KAT II in HD, we isolated and characterized the cDNA sequence and determined the genomic organization of mouse KAT II (mKat-2).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!