Drosophila cardiac tube organogenesis requires multiple phases of Hox activity.

Dev Biol

Laboratoire de Génétique et Physiologie du Développement, UMR 6545 CNRS-Université, IBDM-CNRS-Université de la Méditerranée, Marseille Cedex 09, 13288 France.

Published: August 2004

The segmented Drosophila linear cardiac tube originates from two cell lineages that give rise to the anterior aorta (AA) and the posterior cardiac tube. The three Hox genes of the Bithorax Complex as well as Antennapedia (Antp) have been shown to be expressed in the posterior cardiac tube, while no Hox gene is expressed in the anterior aorta. We show that the cells of the whole tube adopt the anterior aorta identity in the complete absence of Hox function. Conversely, ectopic expression of Antp, Ultrabithorax (Ubx), or abdominal-A (abd-A) transformed the anterior aorta into posterior cardiac tube by all available criteria, indicating an equivalent early function in their ability to direct a posterior cardiac tube lineage. We further demonstrate that Hox genes act in a subsequent step during cardiac tube organogenesis, specifically on the differentiation of posterior cardiac tube myocytes. In addition, while some of these functions are fulfilled equally well by any one of the three Hox genes, some others are specific to a given Hox. Notably, the gene encoding the anion transporter Na+-Driven Anion Exchanger 1 behaves as a Hox differential transcriptional target and is activated by abd-A in the heart and repressed by Ubx in the posterior aorta. This analysis illustrates the mechanisms by which Hox genes can orchestrate organogenesis and, in particular, allows a clear uncoupling of the different phases of Hox activity in this process.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ydbio.2004.04.036DOI Listing

Publication Analysis

Top Keywords

cardiac tube
32
posterior cardiac
20
anterior aorta
16
hox genes
16
hox
10
tube
9
tube organogenesis
8
phases hox
8
hox activity
8
aorta posterior
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!