A commercial, 7 microJ/pulse, 550 ps microchip laser is used to induce plasma on Pb, Si, Cu, Fe, Ni, Ti, Zn, Ta, and Mo foils and a Si wafer. The measured plasma lifetime is comparable with the duration of the laser pulse (a few ns). The plasma continuum radiation is low, while some of the strong resonance lines (e.g., Zn 213.86 nm) show self-reversal. Quantitative analysis is possible using non-gated detectors but analytical lines should be chosen with care to avoid reduction in the linear dynamic range. The mass removed (0.5-20 ng/pulse) is sufficient to yield spectra that are detectable with portable grating spectrometers equipped with non-gated, non-intensified detector arrays. The spectrum of Cd is detected with a broadband portable spectrometer (200-950 nm). The combination of the broadband spectrometer and the microchip laser is very promising for material identification, especially in field applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1366/0003702041389427 | DOI Listing |
Nanomaterials (Basel)
November 2024
School of Material Science and Engineering, Pusan National University, Busan 46241, Republic of Korea.
The rapid evolution of microelectronics and display technologies has driven the demand for advanced manufacturing techniques capable of precise, high-speed microchip transfer. As devices shrink in size and increase in complexity, scalable and contactless methods for microscale placement are essential. Laser-induced forward transfer (LIFT) has emerged as a transformative solution, offering the precision and adaptability required for next-generation applications such as micro-light-emitting diodes (μ-LEDs).
View Article and Find Full Text PDFSci Adv
December 2024
Huanjiang Laboratory, Department of Engineering Mechanics, Soft Matter Research Center, Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, State Key Laboratory of Brain-Machine Intelligence, Zhejiang University, Zhejiang, China.
Transfer printing based on tunable and reversible adhesive that enables the heterogeneous integration of materials is essential for developing envisioned electronic systems. An adhesive with both adhesion enhancement and reduction capabilities in a rapid and selective manner is challenging. Here, we report a laser-induced adhesive, featuring a geometrically simple shape memory polymer layer on a glass backing, with excellent adhesion modulation capability for programmable pickup and noncontact printing of microchips.
View Article and Find Full Text PDFUltrasonics
February 2025
Department of Mechanical Engineering The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR, PR China. Electronic address:
The recent advances in micromanufacturing have been pushing boundaries of the new generation of semiconductor devices, which, in the meantime, brings new challenges in the material and structural characterization - a key step to ensure the device quality through the micromanufacturing process. An ultrafast laser-enable optoacoustic characterization methodology is developed, targeting in situ calibration and delineation of the three-dimensional (3-D), nanoscopic interior features of opaque semiconductor chips. With the guidance of ultrafast electron-phonon coupling effect and velocity-perturbated optical interference, a femtosecond-laser pump-probe set-up based on Sagnac interferometer is configured to generate and acquire picosecond ultrasonic bulk waves (P-UBWs) traversing the microchips.
View Article and Find Full Text PDFAnal Methods
October 2024
School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266113, China.
Water environments contaminated by heavy metal ions present significant challenges because these pollutants do not degrade naturally, leading to their gradual bioaccumulation in animals and plants, which ultimately poses an insurmountable threat to human health. Therefore, rapid and accurate detection of heavy metal ions in water is of great significance for environmental protection and disease prevention. In this work, we developed a novel method based on microfluidic electrophoresis coupled with indirect chemiluminescence for the immediate detection of Cd(II), Pb(II) and Hg(II) heavy metal ions.
View Article and Find Full Text PDFAstrobiology
August 2024
School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia, USA.
The abundance of potentially habitable hypersaline environments in our solar system compels us to understand the impacts of high-salt matrices and brine dynamics on biosignature detection efforts. We identified and quantified organic compounds in brines from South Bay Salt Works (SBSW), where evapoconcentration of ocean water enables exploration of the impact of NaCl- and MgCl-dominated brines on the detection of potential biosignature molecules. In SBSW, organic biosignature abundance and distribution are likely influenced by evapoconcentration, osmolyte accumulation, and preservation effects.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!