Topoisomerase I-DNA complex stability induced by camptothecins and its role in drug activity.

Curr Med Chem Anticancer Agents

University of Mississippi, Dept. of Chemistry and Biochemistry, Coulter Hall, Room 409, University, MS 38677, USA.

Published: July 2004

The mechanism of cytotoxicity of the camptothecin family of antitumor drugs is thought to be the consequence of a collision between moving replication forks and camptothecin-stabilized cleavable DNA-topoisomerase I complexes. One property of camptothecin analogs relevant to their potent antitumor activity is the slow reversal of the cleavable complexes formed with these drugs. The persistence of cleavable complexes with time may be an essential property for increasing the likelihood of a collision between the replication fork and a cleavable complex, giving rise to lethal DNA lesions. In this paper, we examined a number of camptothecin analogs forming cleavable complexes with distinctly different stabilities. Absolute reaction rate analysis was carried out for each derivative. Our results indicate that the stability of the cleavable complex is dominated by the activation entropy (DeltaS++) of the reversal process. We measured the relative lipophilicity of the CPT analogs by reverse-phase HPLC, but the DeltaS++ of complex reversal is not directly related to the lipophilicity of the CPT analog being used. We suggest that solvent ordering around the 7- through 10-position of the CPT ring may be responsible for reversal rate's dependence on DeltaS++. We demonstrate that the cleavable complex stability conferred by each camptothecin analog is directly correlated with the induction of apoptosis and cytotoxicity to tumor cells.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568011043352894DOI Listing

Publication Analysis

Top Keywords

cleavable complexes
12
cleavable complex
12
complex stability
8
camptothecin analogs
8
lipophilicity cpt
8
cleavable
7
complex
5
topoisomerase i-dna
4
i-dna complex
4
stability induced
4

Similar Publications

Photosynthetic activity is established during chloroplast biogenesis. In this study we used 680 nm red light to overexcite Photosystem II and disrupt photosynthesis in two conditional mutants (var2 and abc1k1) which reversibly arrested chloroplast biogenesis. During biogenesis, chloroplasts import most proteins associated with photosynthesis.

View Article and Find Full Text PDF

FXa-Responsive Hydrogels to Craft Corneal Endothelial Lamellae.

Adv Healthc Mater

January 2025

Max Bergmann Center of Biomaterials Dresden, Leibniz-Institut für Polymerforschung Dresden e. V., Hohe Str. 6, 01069, Dresden, Germany.

Cell-instructive polymer hydrogels are instrumental in tissue engineering for regenerative therapies. Implementing defined and selective responsiveness to external stimuli is a persisting challenge that critically restricts their functionality. Addressing this challenge, this study introduces a versatile, modular hydrogel system composed of four-arm poly(ethylene glycol)(starPEG)-peptide and glycosaminoglycan(GAG)-maleimide conjugates.

View Article and Find Full Text PDF

Photoswitchable Topological Regulation of Covalent Macrocycles, Molecular Recognition, and Interlocked Structures.

Angew Chem Int Ed Engl

December 2024

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.

Macrocycles represent one important class of functional molecules, and dynamic macrocycles with the potential of cleavability, adaptability, and topological conversion are challenging. Herein we report photoswitchable allosteric and topological control of dynamic covalent macrocycles and further the use in guest binding and mechanically interlocked molecules. The manipulation of competing ring-chain equilibria and bond formation/scission within reaction systems enabled light-induced structural regulation over dithioacetal and thioacetal dynamic bonds, accordingly realizing bidirectional switching between crown ether-like covalent macrocycles and their linear counterparts.

View Article and Find Full Text PDF

The field of crosslinking mass spectrometry has seen substantial advancements over the past decades, enabling the structural analysis of proteins and protein complexes and serving as a powerful tool in protein-protein interaction studies. However, data analysis of large non-cleavable crosslink studies is still a mostly unsolved problem due to its n-squared complexity. We here introduce an algorithm for the identification of non-cleavable crosslinks implemented in our crosslinking search engine MS Annika that is based on sparse matrix multiplication and allows for proteome-wide searches on commodity hardware.

View Article and Find Full Text PDF

Engineering of peptide assemblies for adaptable protein delivery to achieve efficient intracellular biocatalysis.

J Colloid Interface Sci

December 2024

State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East), 66 Changjiang West Road, Qingdao 266580, China.

Efficient intracellular delivery of native proteins remains a big challenge, which greatly hinders the development of protein therapy. Here, we report a generalizable peptide vector that can encapsulate and deliver various proteins to achieve efficient intracellular biocatalysis. The peptide was rationally designed to be cationic amphiphilic peptide that consist of four functional fragments, that is, a hydrophobic domain to promote molecular assembly, an enzyme-cleavable fragment to introduce stimuli-responsibility, several cationic arginine (Arg) residues to enhance cell interaction and transmembrane efficiency, and the cystine (Cys) residues with redox sensitivity to adjust the stability of the peptide/protein complexes as needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!