Chiral, facial tris-cyclometalated Ir(III) complexes, fac-Delta-Ir(pppy)(3), fac-Lambda-Ir(pppy)(3), fac-Lambda-IrL (where pppy is (8R,10R)-2-(2'-phenyl)-4,5-pinenopyridine and L is a tripodal ligand comprising three pppy moieties connected through a mesityl spacer) have been synthesized and characterized. In IrL, NMR and CD studies indicate that only one diastereomer is formed, with the Lambda configuration at the metal center, whereas enantiopure pppy yields the fac-Lambda- and the fac-Delta-stereoisomer in a ratio 2:3. fac-Lambda-IrL was structurally characterized using X-ray crystallography. The luminescence properties including CPL, of the three complexes and their sensitivity to dioxygen were examined.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja048655dDOI Listing

Publication Analysis

Top Keywords

diastereoselective formation
4
formation chiral
4
chiral tris-cyclometalated
4
tris-cyclometalated iridium
4
iridium iii
4
iii complexes
4
complexes characterization
4
characterization photophysical
4
photophysical properties
4
properties chiral
4

Similar Publications

The endoperoxide scaffold is found in numerous natural products and synthetic substances of pharmaceutical interest. The main challenge to their synthetic access remains the preparation of chiral compounds due to the weakness of the peroxide bond, which limits the scope of available or applicable methods. Here, we demonstrate how peroxycarbenium species can be trapped by silylated nucleophiles with high enantioselectivities and diastereoselectivities when applicable, using a chiral imidophosphorimidate (IDPi) as a catalyst.

View Article and Find Full Text PDF

TBAT-Catalyzed Dioxasilinane Formation from Beta-Hydroxy Ketones.

Tetrahedron

February 2025

Department of Chemistry, Western Washington University, Bellingham, WA 98225 (USA).

Beta-hydroxy ketones can be reduced using a sequence of ruthenium-catalyzed silyl etherification followed by tetrabutylammonium fluoride (TBAF) promoted intramolecular hydrosilylation. Switching from TBAF to tetrabutylammonium difluorotriphenylsilicate (TBAT), even without first forming the silyl ether, gave cyclic dioxasilinane products. These somewhat sensitive compounds could be isolated pure by column chromatography using florisil as the stationary phase.

View Article and Find Full Text PDF

Enantioselective Synthesis of Nonfused Eight-Membered O-Heterocycles by Sequential Catalysis.

Org Lett

January 2025

Catalytic Hydrogenation Research Center, State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, Key Laboratory of Green Pesticides and Cleaner Production Technology of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

This work describes a chiral bifunctional squaramide/DBU sequential catalytic strategy for the enantioselective synthesis of nonfused chiral eight-membered O-heterocycles through the asymmetric addition of ynones to β,γ-unsaturated α-ketoesters followed by the regio- and diastereoselective cyclization of the adduct intermediates. Mechanistic experiments revealed that an isomerization process should be involved in the ring formation step, and the origin of the high regioselectivity and diastereoselectivity has also been elucidated by the DFT calculations.

View Article and Find Full Text PDF

We report herein a robust enantioselective ring opening coupling of oxabenzonorbornadienes via Pd(II)-catalyzed domino cyclization of alkynylanilines, which features the formation of three covalent bonds and two contiguous stereocenters with excellent enantio- and diastereoselectivity and a broad substrate scope. The good functional group tolerance of this domino desymmetrization strategy enables efficient late-stage transformation of natural product-derived alkynylanilines. The resulting indolated dihydronaphthols could serve as a valuable platform to streamline the diversity-oriented synthesis of other valuable enantioenriched tetrahydronaphthalene derivatives.

View Article and Find Full Text PDF

In this work, we developed a phosphine-catalyzed cascade lactonization/[2 + 1] annulation reaction between vinyl oxiranes and sulfonium compounds for the highly diastereoselective construction of spiro-2(3)-furanone skeletons. The cascade cycloaddition proceeds via the 2(5)-furanone phosphonium intermediate, introducing an oxygen-containing active intermediate for phosphine catalysis. These findings highlight the significant potential of harnessing vinyl oxiranes as versatile synthons for constructing spirocyclic compounds through simultaneous multicyclic skeleton formation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!