The cell cycle is the process by which cells grow, replicate their genome and divide. The cell cycle control system is a cyclically-operating biochemical device constructed from a set of interacting proteins that induce and coordinate proper progression through the cycle, and includes cyclins, cyclin-dependent kinases (CDK) and their inhibitors (CDKI). There are mainly two families of CDKI, the INK family (INK4a/p16; INK4b/p15; INK4c/p18 and INK4d/p19) and the WAF/KIP family (WAF1/p21; KIP1/p27; KIP2/p57). Progression through the cell cycle is mainly dependent on fluctuations in the concentration of cyclins and CDKI achieved through the programmed degradation of these proteins by proteolysis within the ubiquitin-proteasome system. There is also a transcriptional regulation of cyclin expression, probably dependent on CDK phosphorylation. The p53 family--p53, p63 and p73--function as transcription factors that play a major role in regulating the response of mammalian cells to stressors and damage, in part through the transcriptional activation of genes involved in cell cycle control (e.g. p21), DNA repair, senescence, angiogenesis and apoptosis. Essential for the maintenance of euploidy during mitosis is human securin, identical to the product of the pituitary tumour-transforming gene (PTTG). Loss of regulation at the G1/S transition appears to be a common event among virtually all types of human tumours. Aberrations of one or more components of the pRb/p16/cyclin D1/CDK4 pathway seem to be a frequent event (80%) in pituitary tumours. The role of p27 is rather that of a haploinsufficient gene. p27-/- mice show an increased growth rate, due to increased cellularity, testicular and ovarian cell hyperplasia and infertility, and hyperplasia of the pituitary intermediate lobe with nearly 100% mortality caused by such a benign pituitary tumour. Although the p27 gene was not found to be mutated in human pituitary tumours and its mRNA expression was similar in tumour samples in comparison with normal pituitaries, the load of p27 protein expression in corticotroph adenomas and pituitary carcinomas was shown to be much lower than those in normal pituitary tissue or other types of pituitary adenoma, suggesting that post-translational processing of p27 accelerates its removal from the nucleus. In respect to p27 degradation and its cellular compartmentalization, several pathways have been explored. Malignant tumours are associated with increased nuclear immunostaining for Jun-activation binding protein-1 (Jab1) which is responsible for phosphorylated p27 export from the nucleus. Corticotrophinomas are characterized by massively increased phosphorylation of p27 on Thr187, but are not associated with changes in Jab1. Macrophage inhibitory factor (MIF), which binds and inactivates Jab1, was noted to be over-expressed in tumours with abundant Jab1, suggesting that it may be part of a compensatory mechanism to moderate Jab1 activity. Proteasomal degradation of p27 requires its ubiquitylation by the SCF ubiquitin ligase, with specific addressing by the F-box protein Skp2 and its co-factor Cks1. Pituitary tumours with high p27 protein expression showed significantly less Skp2 expression than samples with low p27 immunostaining, suggesting that increased Skp2 could play at least a part in this process. No difference was observed in Cks1 mRNA levels between normal pituitaries and pituitary adenomas. The present data suggest that inhibition of growth and tumour development is sensitive not only to the absolute levels of p27 protein, but also to its cellular compartmentalization. Very recent findings from our group have established up-regulation of the serine-threonine kinase Akt in pituitary tumours compared to normal pituitary, which may cause phosphorylation of p27 on Thr157 and cytoplasmic retention of p27. PTTG protein is highly expressed in various human tumours, including pituitary tumours. While its mRNA levels are low in normal pituitary, increases in PTTG transcripts from more than 50% to more than 10-fold were recorded in the majority of a series of pituitary adenomas. Control of the cell cycle is a vital part of the cell's replication machinery. Disruption of this process is commonly seen in pituitary tumours and we are now beginning to identify regulatory elements which are likely to play a major role in pituitary oncogenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1159/000079037DOI Listing

Publication Analysis

Top Keywords

cell cycle
24
pituitary tumours
24
pituitary
18
p27
13
p27 protein
12
normal pituitary
12
tumours
10
pituitary oncogenesis
8
cycle control
8
play major
8

Similar Publications

HP1 Promotes the Centromeric Localization of ATRX and Protects Cohesion by Interfering Wapl Activity in Mitosis.

Front Biosci (Landmark Ed)

January 2025

The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.

Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Powdered germinated Thai rice () is widely utilised as a dietary supplement to support health and prevent diseases. This study investigated the bioactive compound profile of water extracts from beverage powder made from Thai germinated brown rice (GBRE) and assessed its anticancer effects on cholangiocarcinoma, lung cancer, and liver cancer cell lines. Proton nuclear magnetic resonance (1H-NMR) revealed 23 metabolites, including amino acids, sugar, phenolic compounds and nitrogenous compounds.

View Article and Find Full Text PDF

This study aimed to create a new recombinant virus by modifying the EV-A71 capsid protein, serving as a useful tool and model for studying human Enteroviruses. We developed a new screening method using EV-A71 pseudovirus particles to systematically identify suitable insertion sites and tag types in the VP1 capsid protein. The pseudovirus's infectivity and replication can be assessed by measuring postinfection luciferase signals.

View Article and Find Full Text PDF

Porcine reproductive and respiratory syndrome virus (PRRSV) remains a major concern for swine health. Isolating PRRSV is essential for identifying infectious viruses and for vaccine formulation. This study evaluated the potential of using tongue fluid (TF) from perinatal piglet mortalities for PRRSV isolation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!