Continuing our studies into the effect that N-N' ligands have on CO/styrene copolymerization, we prepared new C(1)-symmetrical pyridine-imidazoline ligands with 4',5'-cis stereochemistry in the imidazoline ring (5) and 4',5'-trans stereochemistry (6-10) and compared them with our previously reported ligands (1-4). Their coordination to neutral methylpalladium(II) (5 a-10 a) and cationic complexes (5 b-10 b), investigated in solution by NMR spectroscopy, indicates that both the electronic and steric properties of the imidazolines determine the stereochemistry of the palladium complexes. The crystal structures of two neutral palladium precursors [Pd(Me)(2-n)Cl(n)(N-N')] (n=1 for 8 a; n=2 for 9 a') show that the Pd-N coordination distances and the geometrical distortions in the imidazoline ring depend on the electronic nature of the substituents in the imidazoline fragment. Density functional calculations performed on selected neutral and cationic palladium complexes compare well with NMR and X-ray data. The calculations also account for the formation of only one or two stereoisomers of the cationic complexes. The performance of the cationic complexes as catalyst precursors in CO/4-tert-butylstyrene copolymerization under mild pressures and temperatures was analyzed in terms of the productivity and degree of stereoregularity of the polyketones obtained. Insertion of CO into the Pd-Me bond, which was monitored by multinuclear NMR spectroscopy, shows that the N ligand influences the stereochemistry of the acyl species formed.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.200306051DOI Listing

Publication Analysis

Top Keywords

cationic complexes
12
co/styrene copolymerization
8
pyridine-imidazoline ligands
8
imidazoline ring
8
nmr spectroscopy
8
palladium complexes
8
complexes
5
insights co/styrene
4
copolymerization pdii
4
pdii catalysts
4

Similar Publications

Compared to aziridines, azaphosphiridines, which formally result from the replacement of a carbon atom by phosphorus, have been much less studied. In this work, accurate values for one of the most prominent properties, the ring strain energy (RSE), have been theoretically examined for a wide range of azaphosphiridine derivatives. Strongly related aspects of interest for developing the use of azaphosphiridines in heteroatom and polymer chemistry are ring opening reactions and polymerisations, the latter facilitated by their significantly high RSE.

View Article and Find Full Text PDF

Due to the escalating threat of the pathogens' capability of quick adaptation to antibiotics, finding new alternatives is crucial. Although antimicrobial peptides (AMPs) are highly potent and effective, their therapeutic use is limited' as they are prone to enzymatic degradation, are cytotoxic and have low retention. To overcome these challenges, we investigate the complexation of the cationic AMP colistin with diblock copolymers poly(ethylene oxide)--poly(methacrylic acid) (PEO--PMAA) forming colistin-complex coacervate core micelles (colistin-C3Ms).

View Article and Find Full Text PDF

Capsaicin, a polyphenol, is known to regulate energy expenditure and thermogenesis in adipocytes and muscles. However, its role in modulating uncoupling proteins (UCPs) and adenosine triphosphate (ATP)-dependent thermogenesis in muscles remains unclear. This study investigated the mechanisms underlying the role of capsaicin in modulating the UCP- and ATP-dependent thermogenesis in C2C12 myoblasts, as well as the gastrocnemius (GM) and soleus muscles (SM) of mice.

View Article and Find Full Text PDF

The performance of Cu-exchanged chabazite (Cu-CHA) for the ammonia-assisted selective catalytic reduction of NO (NH-SCR) depends critically on the presence of paired complexes. Here, a machine-learning force field augmented with long-range Coulomb interactions is developed to investigate the effect of Al-distribution and Cu-loading on the mobility and pairing of complexes. Performing unbiased and constrained molecular dynamics simulations, we obtain unique information inaccessible to first-principle calculations and experiments.

View Article and Find Full Text PDF

Construction of single probes for simultaneous detection of common trivalent metal ions has attracted much attention due to higher efficiency in analysis and cost. A naphthalimide-based fluorescent probe K1 was synthesized for selective detection of Al, Cr and Fe ions. Fluorescence emission intensity at 534 nm of probe K1 in DMSO/HO (9:1, v/v) was significantly enhanced upon addition of Al, Cr and Fe ions while addition of other metal ions (Li, Na, K, Ag, Cu, Fe, Zn, Co, Ni, Mn, Sr, Hg, Ca, Mg, Ce, Bi and Au) did not bring about substantial change in fluorescence emission.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!