A two-phase sequential dynamic change in the secondary structure of hen egg lysozyme (Lys) adsorbed on solid substrates was observed. The first phase involved fast conversion of alpha-helix to random/turns (within the first minute or at very low coverage or high substrate wettability) with no perceptible change in beta-sheet content. The second phase (1-1200 min), however, involved a relatively slow conversion from alpha-helix to beta-sheet without a noticeable change in random/turns. An important finding of this work is that the concentration of lysozyme in the adsorbed state has a substantial effect on the fractional content of secondary structures. Attenuated total reflection Fourier transform infrared (ATR/FTIR) spectroscopy, along with a newly-developed optimization algorithm for predicting the content of secondary structure motifs, was used to correlate the secondary structure and the amount of adsorbed lysozyme with the surface wettability of six different flat nanoporous substrates. Although three independent variables, surface wettability, solution concentration and time for adsorption, were used to follow the fractional structural changes of lysozyme, the results were all normalized onto a single plot with the amount adsorbed as the universal independent variable. Consequently, lateral interactions among proteins likely drive the transition process. Direct intermolecular force adhesion measurements between lysozyme and different functionalized self-assembled alkanethiol monolayers confirm that hydrophobic surfaces interact strongly with proteins. The lysozyme-unfolding pathway during early adsorption appears to be similar to that predicted by published molecular modeling results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/prot.20183 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!