Comparisons among closely related species have led to the proposal that the duplications found in many extant genomes are the remnants of an ancient polyploidization event, rather than a result of successive duplications of individual chromosomal segments. If this interpretation is correct, it would support Ohno's proposal that polyploidization drives evolution by generating the genetic material necessary for the creation of new genes. Paradoxically, analysis of contemporary polyploids suggests that increased ploidy is an inherently unstable state. To shed light on this apparent contradiction and to determine the effects of nascent duplications of the entire genome, we generated isogenic polyploid strains of the budding yeast Saccharomyces cerevisiae. Our data show that an increase in ploidy results in a marked decrease in a cell's ability to survive during stationary phase in growth medium. Tetraploid cells die rapidly, whereas isogenic haploids remain viable for weeks. Unlike haploid cells, which arrest growth as unbudded cells, tetraploid cells continue to bud and form mitotic spindles in stationary phase. The stationary-phase death of tetraploids can be prevented by mutations or conditions that result in growth arrest. These data show that whole-genome duplications are accompanied by defects that affect viability and subsequent survival of the new organism.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1470947 | PMC |
http://dx.doi.org/10.1534/genetics.104.029256 | DOI Listing |
Gigascience
January 2025
Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou 571101, China.
Background: Drought is a major limiting factor for plant survival and crop productivity. Stylosanthes angustifolia, a pioneer plant, exhibits remarkable drought tolerance, yet the molecular mechanisms driving its drought resistance remain largely unexplored.
Results: We present a chromosome-scale reference genome of S.
Sci Rep
January 2025
Department of Biology, Case Western Reserve University, Cleveland, OH, USA.
Tylosema esculentum (marama bean), an underutilized orphan legume native to southern Africa, holds significant potential for domestication as a rescue crop to enhance local food security. Well-adapted to harsh desert environments, it offers valuable insights into plant resilience to extreme drought and high temperatures. In this study, k-mer analysis indicated marama as an ancient allotetraploid legume.
View Article and Find Full Text PDFSci Rep
January 2025
Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China.
The DHHC domain genes are crucial for protein lipid modification, a key post-translational modification influencing membrane targeting, subcellular trafficking, and protein function. Despite their significance, the DHHC gene family in Saccharinae remains understudied. Here, we identified 32 (110 alleles), 28, 53, and 48 DHHC genes in Saccharum spontaneum Np-X, Erianthus rufipilus, Miscanthus sinensis, and Miscanthus lutarioriparius, respectively.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
School of Life Sciences, Jiangsu University, Zhenjiang 212013, Jiangsu, China. Electronic address:
DEK is a chromatin protein that interacts with DNA to influence chromatin formation, thereby affecting plant growth, development, and stress response. This study investigates the molecular evolution of the DEK family in plants, with a particular focus on the Brassica species. A total of 127 DEK genes were identified in 34 plants and classified into seven groups based on the phylogenetic analysis.
View Article and Find Full Text PDFGenes Cells
January 2025
Department of Genetic Biochemistry, The National Institutes of Biomedical Innovation, Health and Nutrition, Shinjuku-ku, Tokyo, Japan.
Catalytic subunit of DNA polymerase ζ (REV3), involved in translesion-replication is evolutionarily conserved from yeast and plants to higher eukaryotes. However, a large intermediate domain is inserted in REV3 of humans and mice. The domain has "DUF4683" region, which is significantly similar to human neurite extension and migration factor (NEXMIF).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!