Maintenance of both genome stability and its structural organization into chromatin are essential to avoid aberrant gene expression that could lead to neoplasia. Genome integrity being threatened by various sources of genotoxic stresses, cells have evolved regulatory mechanisms, termed cell cycle checkpoints. In general, these surveillance pathways are thought to act mainly to coordinate proficient DNA repair with cell cycle progression. To date, this cellular response to genotoxic stress has been viewed mainly as a DNA-based signal transduction pathway. Recent studies, in both yeast and human, however, highlight possible connections between chromatin structure and cell cycle checkpoints, in particular those involving kinases of the ATM and ATR family, known as key response factors activated early in the checkpoint pathway. In this review, based on this example, we will discuss hypotheses for chromatin-based events as potential initiators of a checkpoint response or conversely, for chromatin-associated factors as targets of checkpoint proteins, promoting changes in chromatin structure, in order to make a lesion more accessible and contribute to a more efficient repair response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dnarep.2004.03.010 | DOI Listing |
BMC Urol
January 2025
Institute of Clinical Medicine, The Second affiliated Hospital of Hainan Medical University, 368th Yehai Avenue, Haikou, Hainan, 570311, China.
Background: Clear cell renal cell carcinoma (ccRCC) is the most common malignant urological tumor, and regrettably, and is insensitive to chemotherapy and radiotherapy, resulting in poor patient outcomes. DBF4 plays a critical role in DNA replication and participates in various biological functions, making it an attractive target for cancer treatment. However, its significance in ccRCC has not yet been explored.
View Article and Find Full Text PDFGeroscience
January 2025
Department of Molecular Pharmacology and Physiology, University of South Florida, Morsani College of Medicine, 12901 Bruce B. Downs Blvd., Tampa, FL, USA.
Cellular senescence contributes to inflammation and organ dysfunction during aging. While this process is generally characterized by irreversible cell cycle arrest, its morphological features and functional impacts vary in different cells from various organs. In this study, we examined the expression of multiple senescent markers in the lungs of young and aged humans and mice, as well as in mouse lung endothelial cells cultured with a senescence inducer, suberoylanilide hydroxamic acid (SAHA), or doxorubicin (DOXO).
View Article and Find Full Text PDFTheor Appl Genet
January 2025
Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
In tetraploid F1 populations, traditional segregation distortion tests often inaccurately flag SNPs due to ignoring polyploid meiosis processes and genotype uncertainty. We develop tests that account for these factors. Genotype data from tetraploid F1 populations are often collected in breeding programs for mapping and genomic selection purposes.
View Article and Find Full Text PDFNat Cardiovasc Res
January 2025
Department of Pharmacy at the Second Affiliated Hospital, and Department of Pharmacology at College of Pharmacy (The Key Laboratory of Cardiovascular Research, Ministry of Education; National Key Laboratory of Frigid Zone Cardiovascular Diseases), Harbin Medical University, Harbin, China.
Targeting the cardiomyocyte cell cycle is a promising strategy for heart repair following injury. Here, we identify a cardiac-regeneration-associated PIWI-interacting RNA (CRAPIR) as a regulator of cardiomyocyte proliferation. Genetic ablation or antagomir-mediated knockdown of CRAPIR in mice impairs cardiomyocyte proliferation and reduces heart regenerative potential.
View Article and Find Full Text PDFNature
January 2025
Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, School of Materials Science and Engineering, Peking University, Beijing, China.
With promises for high specific energy, high safety and low cost, the all-solid-state lithium-sulfur battery (ASSLSB) is ideal for next-generation energy storage. However, the poor rate performance and short cycle life caused by the sluggish solid-solid sulfur redox reaction (SSSRR) at the three-phase boundaries remain to be solved. Here we demonstrate a fast SSSRR enabled by lithium thioborophosphate iodide (LBPSI) glass-phase solid electrolytes (GSEs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!