A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Inhibition of endotoxin response by synthetic TLR4 antagonists. | LitMetric

Inhibition of endotoxin response by synthetic TLR4 antagonists.

Curr Top Med Chem

Eisai Medical Research Inc., Andover, MA, USA.

Published: March 2005

Endotoxin, from the outer membrane of Gram-negative bacteria, has been implicated as the etiological agent of a variety of pathologies ranging from relatively mild (fever) to lethal (septic shock, organ failure, and death). While endotoxin (also known as lipopolysaccharide or LPS) is a complex heterogeneous molecule, the toxic portion of LPS (the lipid A portion) is relatively similar across a wide variety of pathogenic strains of bacteria, making this molecule an attractive target for the development of an LPS antagonist. Research over the past fifteen years focused on the design of various lipid A analogs including monosaccharide, acyclic and disaccharide compounds has lead to the development of E5564, an advanced, unique and highly potent LPS antagonist. E5564 is a stable, pure LPS antagonist that is selective against endotoxin-mediated activation of immune cells in vitro and in animal models. In Phase I clinical trials, we have developed an ex vivo endotoxin antagonism assay that has provided results on pharmacodynamic activity of E5564 in addition to the more typical safety and pharmacokinetic evaluations. Results from these assays have been reinforced by analysis of in vivo antagonistic activity using a human endotoxemia model. Results from all of these studies indicate that E5564 is an effective in vivo antagonist of endotoxin, and may prove to be of benefit in a variety of endotoxin-mediated diseases. This review discusses the evolution of synthetic LPS antagonists with emphasis on the SAR and development of E5564 and its precursors.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1568026043388123DOI Listing

Publication Analysis

Top Keywords

lps antagonist
12
development e5564
8
lps
6
e5564
5
inhibition endotoxin
4
endotoxin response
4
response synthetic
4
synthetic tlr4
4
tlr4 antagonists
4
endotoxin
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!