Drugs from the sea: conopeptides as potential therapeutics.

Curr Med Chem

Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Victoria, 3010, Australia.

Published: July 2004

Marine cone snails from the genus Conus are estimated to consist of up to 700 species. These predatory molluscs have devised an efficient venom apparatus that allows them to successfully capture polychaete worms, other molluscs or in some cases fish as their primary food sources. The toxic venom used by the cone shells contains up to 50 different peptides that selectively inhibit the function of ion channels involved in the transmission of nerve signals in animals. Each of the 700 Conus species contains a unique set of peptides in their venom. Across the genus Conus, the conotoxins represent an extensive array of ion channel blockers each showing a high degree of selectivity for particular types of channels. We have undertaken a study of the conotoxins from Australian species of Conus that have the capacity to inhibit specifically the nicotinic acetylcholine receptors in higher animals. These conotoxins have been identified by mass spectroscopy and their peptide sequences in some cases deduced by the application of modern molecular biology to the RNA extracted from venom ducts. The molecular biological approach has proven more powerful than earlier protein/peptide based technique tor the detection of novel conotoxins [1,2]. Novel conotoxins detected in this way have been further screened for their abilities to modify the responses of tissues to pain stimuli as a first step in describing their potential as lead compounds for novel drugs. This review describes the progress made by several research groups to characterise the properties of conopeptides and to use them as drug leads for the development of novel therapeutics for the treatment of a range of neurological conditions.

Download full-text PDF

Source
http://dx.doi.org/10.2174/0929867043364928DOI Listing

Publication Analysis

Top Keywords

genus conus
8
novel conotoxins
8
conotoxins
5
drugs sea
4
sea conopeptides
4
conopeptides potential
4
potential therapeutics
4
therapeutics marine
4
marine cone
4
cone snails
4

Similar Publications

Peptide Toxins from Marine Snails with Activity on Potassium Channels and/or Currents.

Toxins (Basel)

November 2024

Laboratorio de Neurofarmacología Marina, Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Juriquilla 76230, Mexico.

Toxins from snails are peptides characterized by a great structural and functional diversity. They have a high affinity for a wide range of membrane proteins such as ion channels, neurotransmitter transporters, and G protein-coupled receptors. Potassium ion channels are integral proteins of cell membranes that play vital roles in physiological processes in muscle and neuron cells, among others, and reports in the literature indicate that perturbation in their function (by mutations or ectopic expression) may result in the development and progression of different ailments in humans.

View Article and Find Full Text PDF

Advances in the synthesis and engineering of conotoxins.

Eur J Med Chem

January 2025

Centre for Pain Research, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, 4067, Australia.

Conotoxins, isolated from the venom of carnivorous marine snails of the Conus genus, are disulfide-rich peptides and proteins with well-defined three-dimensional structures. Conotoxins' ability to target a wide range of ion channels and receptors, including voltage- and ligand-gated ion channels, G protein-coupled receptors, monoamine transporters, and enzyme, at exquisite potency and selectivity make them valuable research and therapeutic tools. Despite their potentials, Conus venom peptides are present in limited quantities in nature and possess structural complexity that raises significant synthetic challenges for both chemical synthesis and recombinant expression.

View Article and Find Full Text PDF

Mollusk-hunting (molluscivorous) cone snails belong to a monophyletic group in Conus, a genus of venomous marine snails. The molluscivorous lineage evolved from ancestral worm-hunting (vermivorous) snails ∼18 Ma. To enable the shift to a molluscivorous lifestyle, molluscivorous cone snails must solve biological problems encountered when hunting other gastropods, namely: (i) preventing prey escape and (ii) overcoming the formidable defense of the prey in the form of the molluscan shell, a problem unique to molluscivorous Conus.

View Article and Find Full Text PDF
Article Synopsis
  • Venom systems have evolved multiple times across different plant and animal species and show variation based on factors like evolutionary history and diet.
  • Marine cone snails (genus Conus) are a key model for studying these variations due to their diverse species and significant dietary shifts.
  • Research on the venom genes of 42 cone snail species shows that changes from eating worms to fish lead to unique venom compositions that enhance potency, highlighting how prey choice influences venom characteristics.
View Article and Find Full Text PDF

Introduction And Importance: Schistosomiasis, a parasitic disease, is caused by blood flukes from the schistosoma genus. Neuroschistosomiasis is the most severe form of schistosomiasis, which occurs when the host's brain and spinal cord react to the deposition of eggs, leading to neurological symptoms. Neuroschistosomiasis causes various signs and symptoms, such as myelopathy, radiculopathy, and elevated intracranial pressure.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!