To what extent noncovalent chemical-DNA interactions, in particular weak nonbonded DNA intercalation, contribute to genotoxic responses in mammalian cells has not been fully elucidated. Moreover, with the exception of predominantly flat, multiple-fused-ring structures, our ability to predict intercalation ability of novel compounds is nearly completely lacking. Computational programs such as DEREK and MCASE recognize primarily those molecules that can form irreversible covalent adducts with DNA since their learning sets, for the most part, have not been populated by compounds for which a relationship between noncovalent interaction and genotoxicity exists. We describe here a novel three-dimensional (3D) computational DNA-docking model for prediction of DNA intercalative activity of molecules with both classical and nonclassical intercalating structures. The 3D docking results show a remarkable concordance with results obtained from testing these molecules directly in the Chinese hamster V79 cell-based bleomycin amplification system suggesting that either or both of these approaches may have utility in defining noncovalent chemical-DNA interactions. The ability to predict and/or demonstrate cellular DNA intercalation of novel molecules may well provide fresh insights into the nature and mechanistic basis of structurally unexpected genotoxicity observed during safety testing.

Download full-text PDF

Source
http://dx.doi.org/10.1002/em.20036DOI Listing

Publication Analysis

Top Keywords

dna intercalation
12
three-dimensional computational
8
noncovalent chemical-dna
8
chemical-dna interactions
8
ability predict
8
evaluation dna
4
intercalation
4
intercalation potential
4
potential pharmaceuticals
4
pharmaceuticals chemicals
4

Similar Publications

Binuclear ruthenium complexes have been investigated for potential DNA-targeted therapeutic and diagnostic applications. Studies of DNA threading intercalation, in which DNA base pairs must be broken for intercalation, have revealed means of optimizing a model binuclear ruthenium complex to obtain reversible DNA-ligand assemblies with the desired properties of high affinity and slow kinetics. Here, we used single-molecule force spectroscopy to study a binuclear ruthenium complex with a longer semi-rigid linker relative to the model complex.

View Article and Find Full Text PDF

Nile blue has been widely used in histological staining, fluorescence labeling, and DNA probing, with its intercalation behavior into the DNA helix being well documented. Here, we present a comprehensive investigation to address a current knowledge gap regarding the binding properties of Nile blue to two types of double-stranded RNA (dsRNA): poly(A·U) and poly(I·C), using various biophysical techniques. Absorption and fluorescence spectroscopic studies suggest a significant binding interaction between Nile blue and the two designated dsRNAs, specifically indicating an intercalation binding mode with poly(A·U) and demonstrating a noticeably higher binding affinity compared to poly(I·C).

View Article and Find Full Text PDF

Apurinic/apyrimidinic (AP) endonucleases are key enzymes responsible for the repair of base-less nucleotides generated by spontaneous hydrolysis or as DNA repair intermediates. APE1, the major human AP endonuclease, is a druggable target in cancer and its biological function has been extensively studied. However, the molecular features responsible for its substrate specificity are poorly understood.

View Article and Find Full Text PDF

Primary and metastatic tumors of the nervous system represent a diverse group of neoplasms, each characterized by distinct biological features, prognostic outcomes, and therapeutic approaches. Due to their molecular complexity and heterogeneity, nervous system cancers (NSCs) pose significant clinical challenges. For decades, plants and their natural products with established anticancer properties have played a pivotal role in the treatment of various medical conditions, including cancers.

View Article and Find Full Text PDF

In the field of drug development, the quest for novel compounds that bind to DNA with high affinity and specificity never ends. In the present work, we report the newest development in this field, namely, triplex DNA-specific binding ligands based on the 5-substituted flavone scaffold in our lab. Biophysical studies showed that the newly synthesized flavone derivatives (depending on the side chains) bind to triplex DNA with binding affinities better than or similar to 5-substituted 3,3',4',7-tetramethoxyflavonoids.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!