Impact indicators are systems/organisms, the vitality of which alters in response to changes in environmental condition. The indicators assessed in this review fall within the impact category of the driver-pressure-state-impact-response (DPSIR) framework. Instrumental records have shown unequivocal changes in climatic conditions over the past 30 years at a global level but impact indicators allow these changes to be monitored at a finer resolution. Our main aim was to review sets of indicators of climate change currently used in various countries and to make recommendations for their use in the Irish environment. We review a preliminary set of climate change impact indicators in five sectors: agriculture; plant and animal distribution patterns; phenology; palaeoecology and human health. Currently, the most effective impact indicators of climate change have proved to be phenological observations of tree developmental stages. The strongest factor limiting the use of indicators is the lack of long-term data sets from which a climatic signal can be extracted.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00484-004-0215-5 | DOI Listing |
Ecohealth
January 2025
Forestry and Forest Products Research Institute, Matsunosato 1, Tsukuba, Ibaraki, 305-8687, Japan.
Anthropogenic disturbances degrade ecosystems, elevating the risk of emerging infectious diseases from wildlife. However, the key environmental factors for preventing tick-borne disease infection in relation to host species, landscape components, and climate conditions remain unknown. This study focuses on identifying crucial environmental factors contributing to the outbreak of severe fever with thrombocytopenia syndrome (SFTS), a tick-borne disease, in Miyazaki Prefecture, southern Japan.
View Article and Find Full Text PDFEnviron Manage
January 2025
TECNALIA Research & Innovation, Basque Research and Technology Alliance (BRTA), Energy, climate, and urban transition, Parque Tecnológico de Bizkaia, Derio, Spain.
The extent and timescale of climate change impacts remain uncertain, including global temperature increase, sea level rise, and more frequent and intense extreme events. Uncertainties are compounded by cascading effects. Nevertheless, decision-makers must take action.
View Article and Find Full Text PDFSci Rep
January 2025
School of Biosciences, University of Nottingham, Sutton Bonington, LE12 5RD, UK.
Tropical peatlands are carbon-dense ecosystems that are significant sources of atmospheric methane (CH). Recent work has demonstrated the importance of trees as an emission pathway for CH from the peat to the atmosphere. However, there remain questions over the processes of CH production in these systems and how they relate to substrate supply.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland.
The evolutionary history underlying gradients in species richness is still subject to discussions and understanding the past niche evolution might be crucial in estimating the potential of taxa to adapt to changing environmental conditions. In this study we intend to contribute to elucidation of the evolutionary history of liverwort species richness distributions along elevational gradients at a global scale. For this purpose, we linked a comprehensive data set of genus occurrences on mountains worldwide with a time-calibrated phylogeny of liverworts and estimated mean diversification rates (DivElev) and mean ages (AgeElev) of the respective genera per elevational band.
View Article and Find Full Text PDFSci Rep
January 2025
College of Ecology and Environment, Hainan University, Haikou, 570228, China.
Agroforestry systems are known to enhance soil health and climate resilience, but their impact on greenhouse gas (GHG) emissions in rubber-based agroforestry systems across diverse configurations is not fully understood. Here, six representative rubber-based agroforestry systems (encompassing rubber trees intercropped with arboreal, shrub, and herbaceous species) were selected based on a preliminary investigation, including Hevea brasiliensis intercropping with Alpinia oxyphylla (AOM), Alpinia katsumadai (AKH), Coffea arabica (CAA), Theobroma cacao (TCA), Cinnamomum cassia (CCA), and Pandanus amaryllifolius (PAR), and a rubber monoculture as control (RM). Soil physicochemical properties, enzyme activities, and GHG emission characteristics were determined at 0-20 cm soil depth.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!