The biomechanical and neural control of hydrostatic limb movements in Manduca sexta.

J Exp Biol

Department of Biology, Dana Laboratory, Tufts University, Medford, MA 02155, USA.

Published: August 2004

Caterpillars are ecologically successful soft-bodied climbers. They are able to grip tightly to foliage using cuticular hooks at the tips of specialized abdominal limbs called prolegs. The neural control of proleg retraction has been examined in some detail but little is known about how prolegs extend and adduct. This is of particular interest because there are no extensor muscles or any obvious mechanisms for directing hydraulic flow into the proleg. In restrained tobacco hornworms (Manduca sexta), adduction can be evoked by stimulating mechanosensory hairs on the medial surface of the proleg. 3-D kinematics show that extension and adduction occur simultaneously through an unfolding of membrane between the pseudo segments. Hemolymph pressure pulses are not necessary to extend the proleg; instead, the pressure at the base of the proleg decreases before adduction and increases before retraction. It is proposed that these pressure changes are caused by muscles that stiffen and relax the body wall during cycles of retraction and adduction. Electromyographic recordings show that relaxation of the principal planta retractor muscle is essential for normal adduction. Extracellular nerve and muscle recordings in reduced preparations show that medial hair stimulation of one proleg can strongly and bilaterally excite motoneurons controlling the ventral internal lateral muscles of all the proleg-bearing segments. Ablation, nerve section and electromyographic experiments show that this muscle is not essential for adduction in restrained larvae but that it is coactive with the retractors and may be responsible for stiffening the body wall during proleg movements.

Download full-text PDF

Source
http://dx.doi.org/10.1242/jeb.01136DOI Listing

Publication Analysis

Top Keywords

neural control
8
manduca sexta
8
body wall
8
muscle essential
8
proleg
7
adduction
6
biomechanical neural
4
control hydrostatic
4
hydrostatic limb
4
limb movements
4

Similar Publications

Anxiety is known to significantly impair cognitive function, particularly attentional control. While exercise has been demonstrated to alleviate these cognitive deficits, the precise neural mechanisms underlying these effects remain poorly understood. This study examines the effects of exercise on attentional control in individuals with high trait anxiety, based on attentional control theory, which suggests that such individuals have reduced top-down attention.

View Article and Find Full Text PDF

Motor modules are largely unaffected by pathological walking biomechanics: a simulation study.

J Neuroeng Rehabil

January 2025

Department of Mechanical and Aerospace Engineering, University of Florida, PO Box 116250, Gainesville, FL, 32611, USA.

Background: Motor module (a.k.a.

View Article and Find Full Text PDF

As the world recovered from the coronavirus, the emergence of the monkeypox virus signaled a potential new pandemic, highlighting the need for faster and more efficient diagnostic methods. This study introduces a hybrid architecture for automatic monkeypox diagnosis by leveraging a modified grey wolf optimization model for effective feature selection and weighting. Additionally, the system uses an ensemble of classifiers, incorporating confusion based voting scheme to combine salient data features.

View Article and Find Full Text PDF

Gamma oscillations are essential for brain communication. The 40 Hz neural oscillation deficits in schizophrenia impair left frontotemporal connectivity and information communication, causing auditory hallucinations. Transcranial alternating current stimulation is thought to enhance connectivity between different brain regions by modulating brain oscillations.

View Article and Find Full Text PDF

Anhedonia, i.e., the loss of pleasure or lack of reactivity to reward, is a core symptom of major psychiatric conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!