A new integrated real-time control system was designed and operated with fluctuating influent loads for swine wastewater treatment. The system was operated with automatic addition control of an external carbon source, using real-time control technology, which utilized the oxidation-reduction potential (ORP) and the pH as parameters to control the anoxic phase and oxic phase, respectively. The fluctuations in swine wastewater concentration are extreme; an influent with a low C/N ratio is deficient in organic carbon, and a low carbon source level can limit the overall biological denitrification process. Consequently, a sufficient organic source must be provided for proper denitrification. The feasibility of using swine waste as an external carbon source for enhanced biological nitrogen removal was investigated. The real-time control made it possible to optimize the quantity of swine waste added as the load fluctuated from cycle to cycle. The average removal efficiencies achieved for TOC and nitrogen were over 94% and 96%, respectively, using the integrated real-time control strategy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2004.05.006DOI Listing

Publication Analysis

Top Keywords

real-time control
20
integrated real-time
12
swine wastewater
12
carbon source
12
control strategy
8
nitrogen removal
8
wastewater treatment
8
external carbon
8
swine waste
8
control
7

Similar Publications

Hypervirulent Klebsiella pneumoniae (hvKP) pose significant challenges to clinical anti-infective treatment and has emerged as a major threat to global public health. In this study, we employed the loop-mediated isothermal amplification (LAMP) assays with OTG (orange to green) visual dye and multiplex quantitative real-time PCR (qRT-PCR) assay to rapidly detect hvKP. We determined the detection limits of the LAMP methods for K.

View Article and Find Full Text PDF

Rapid visual detection of hepatitis E virus combining reverse transcription recombinase-aided amplification with lateral flow dipstick and real-time fluorescence.

J Clin Microbiol

January 2025

Laboratory of Animal Pathology and Public Health, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Beijing, China.

Unlabelled: Hepatitis E virus (HEV) is a globally prevalent zoonotic pathogen that is primarily spread through the fecal-oral route, such as by consuming undercooked or contaminated pork. HEV infection leads to an estimated 3.3 million symptomatic cases of viral hepatitis and 70,000 deaths in human populations each year.

View Article and Find Full Text PDF

Detection of spp. DNA in gynaecological samples by quantitative real-time polymerase chain reaction (qPCR) is considered to be the reference diagnostic test for female genital schistosomiasis (FGS). However, qPCR needs expensive laboratory procedures and highly trained technicians.

View Article and Find Full Text PDF

Introduction: Schistosomiasis (Bilharzia), a neglected tropical disease caused by parasites, afflicts over 240 million people globally, disproportionately impacting Sub-Saharan Africa. Current diagnostic tests, despite their utility, suffer from limitations like low sensitivity. Polymerase chain reaction (PCR) and quantitative real-time PCR (qPCR) remain the most common and sensitive nucleic acid amplification tests.

View Article and Find Full Text PDF

The Segment Anything model (SAM) is a powerful vision foundation model that is revolutionizing the traditional paradigm of segmentation. Despite this, a reliance on prompting each frame and large computational cost limit its usage in robotically assisted surgery. Applications, such as augmented reality guidance, require little user intervention along with efficient inference to be usable clinically.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!