Cochlear function and susceptibility to noise over-exposure were examined in the congenic mouse strain B6.CAST+Ahl (B6.CAST) and compared to these same features in the CAST/Ei (CAST) and C57BL/6J (C57) parental strains. For both types of comparisons, the primary measure was the distortion-product otoacoustic emissions (DPOAE) at 2f1-2f2. Our assumption was that the B6.CAST mouse was corrected for the early onset age-related hearing loss (AHL) exhibited by one of its parental strains (C57) by the age-resistant properties of its other parental strain (CAST), and thus would exhibit neither AHL nor susceptibility to noise overstimulation effects. With respect to cochlear function, for 2.5-month mice, there was a tendency for DPOAEs to be slightly lower for mid-frequency primary tones for both C57 and B6.CAST mice, while the former mice showed clear AHL effects at the highest test frequency. However, by 5 months of age, the B6.CAST mice, like the CAST mice, displayed robust DPOAE levels that were significantly larger than DPOAE levels for the C57 mice, which were essentially absent for frequencies above about 30 kHz. To investigate the role of the Ahl gene in the susceptibility of the cochlea to the effects of noise over-exposure, two distinct paradigms consisting of temporary (TTS: 1-min, 105-dB SPL, 10-kHz pure tone) and permanent (PTS: 1-h, 105-dB SPL, 10-kHz octave band noise) threshold-shift protocols were used. The brief TTS exposure produced reversible reductions in DPOAEs that for both the B6.CAST and CAST mice recovered to within a few dB of their baseline levels by 3 min post-exposure. In contrast, the C57 mice recovered somewhat slower and, by 5 min post-exposure, emission levels were still 5 dB or more below their corresponding pre-exposure values. At 3 months of age, the TTS mice along with another group of naïve subjects representing the same three mouse strains were exposed to the PTS paradigm. By 4 days post-exposure, for B6.CAST and CAST mice, DPOAE levels had recovered to their pre-exposure control levels. However, DPOAEs for the C57 mice at most of the measurable frequencies were at least 10-30 dB lower than their counterpart baseline levels. Together these data suggest that the Ahl allele in the C57 strain contributes to both the early onset AHL exhibited by these mice as well as their susceptibility to both TTS and PTS over-exposures.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.heares.2004.03.017DOI Listing

Publication Analysis

Top Keywords

cochlear function
12
mice
12
cast mice
12
dpoae levels
12
c57 mice
12
effects noise
8
otoacoustic emissions
8
susceptibility noise
8
noise over-exposure
8
parental strains
8

Similar Publications

Deafness is the most common form of sensory impairment in humans and frequently caused by defects in hair cells of the inner ear. Here we demonstrate that in male mice which model recessive non-syndromic deafness (DFNB6), inactivation of Tmie in hair cells disrupts gene expression in the neurons that innervate them. This includes genes regulating axonal pathfinding and synaptogenesis, two processes that are disrupted in the inner ear of the mutant mice.

View Article and Find Full Text PDF

Thermally Drawn Shape and Stiffness Programmable Fibers for Medical Devices.

Adv Healthc Mater

December 2024

Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London, SW7 2AZ, UK.

Despite the significant advantages of Shape Memory Polymers (SMPs), material processing and production challenges have limited their applications. Recent advances in fiber manufacturing offer a novel approach to processing polymers, broadening the functions of fibers beyond optical applications. In this study, a thermal drawing technique for SMPs to fabricate Shape Memory Polymer Fibers (SMPFs) tailored for medical applications, featuring programmable stiffness and shape control is developed.

View Article and Find Full Text PDF

Middle ear biofilm and sudden deafness - a light and transmission electron microscopy study.

Front Neurol

December 2024

Department of Surgical Sciences, Otorhinolaryngology and Head and Neck Surgery, Uppsala University, Uppsala, Sweden.

Background: There still exists controversy about whether the healthy human middle ear mucosa is sterile or if it may harbor a diverse microbiome. Considering the delicacy of the human round window membrane (RWM), different mechanisms may exist for avoiding inner ear pathogen invasion causing sensorineural deafness. We re-analyzed archival human RWMs using light and transmission electron microscopy after decalcification to determine if bacteria are present in clinically normal human middle ears.

View Article and Find Full Text PDF

This study aimed to compare the effects of cochlear implantation(CI) on vestibular function in patients with large vestibular aqueduct syndrome(LVAS) and in patients with extremely severe deafness with normal inner ear structure. A total of 28 LVAS patients and 28 patients with normal inner ear structure who suffered from extremely severe deafness were selected. The parameters of caloric tests, bone conduction evoked cervical vestibular-evoked myogenic potentials(cVEMP), bone conduction evoked ocular vestibular-evoked myogenic potentials(oVEMP) and video head impulse tests(v-HIT) were compared between the two groups before and after CI.

View Article and Find Full Text PDF

Anthropogenic and climate factors are increasingly affecting the composition and functions of many marine biogenic reefs globally, leading to a decline in associated biodiversity and ecosystem services. Once dominant ecological component, modern oyster reefs in the Mediterranean and Black Sea and the Atlantic Ocean have already been profoundly altered by overharvesting, habitat loss and the introduction of alien species. Far less known are deep-water oyster reefs, which can however form substantial biogenic structures below 30 m depth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!