Production of recombinant C5a from rainbow trout (Oncorhynchus mykiss): role in leucocyte chemotaxis and respiratory burst.

Fish Shellfish Immunol

Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 413 Rosenthal, 3800 Spruce Street, Philadelphia, PA 19104, USA.

Published: September 2004

Activation of the complement system can lead to the formation of the membrane attack complex, in which the component C5 is cleaved into C5a and C5b fragments. The C5a anaphylatoxin is a very potent pro-inflammatory molecule that induces chemotaxis and respiratory burst processes in a variety of mammalian leucocytes. While C5a has been well studied in mammals, little is known about the structure and function of C5a in teleost fish or other non-mammalian species. In the present study, we have produced and purified recombinant rainbow trout C5a (rtC5a), and we have shown that it plays an important role in inducing leucocyte migration as well as in triggering the respiratory burst of peripheral blood (PBLs) and head kidney leucocytes (HKLs). When the carboxy-terminal Arg was removed from rtC5a, its ability to induce cell migration and superoxide production remained intact. Interestingly, we show that leucocytes migrating towards rtC5a attached to the plate with a well-spread circular morphology, whereas those migrating towards activated trout serum displayed more irregular and dendritic-like shapes. Our data suggest that the basic mechanisms of action of the C5a anaphylotoxin have remained conserved for more than 300 million years.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.fsi.2004.04.002DOI Listing

Publication Analysis

Top Keywords

respiratory burst
12
rainbow trout
8
chemotaxis respiratory
8
c5a
7
production recombinant
4
recombinant c5a
4
c5a rainbow
4
trout oncorhynchus
4
oncorhynchus mykiss
4
mykiss role
4

Similar Publications

Nitrogen source type modulates heat stress response in coral symbiont ().

Appl Environ Microbiol

January 2025

Department of Marine Sciences, University of Connecticut, Groton, Connecticut, USA.

Ocean warming due to climate change endangers coral reefs, and regional nitrogen overloading exacerbates the vulnerability of reef-building corals as the dual stress disrupts coral-Symbiodiniaceae mutualism. Different forms of nitrogen may create different interactive effects with thermal stress, but the underlying mechanisms remain elusive. To address the gap, we measured and compared the physiological and transcriptional responses of the Symbiodiniaceae to heat stress (31°C) when supplied with different types of nitrogen (nitrate, ammonium, or urea).

View Article and Find Full Text PDF

Response of to Flooding with Physical Flow.

Plants (Basel)

December 2024

Department of Materials and Life Sciences, Faculty of Science and Technology, Sophia University, Chiyoda, Tokyo 102-8554, Japan.

Flooding causes severe yield losses worldwide, making it urgent to enhance crop tolerance to this stress. Since natural flooding often involves physical flow, we hypothesized that the effects of submergence on plants could change when combined with physical flow. In this study, we analyzed the growth and transcriptome of exposed to submergence or flooding with physical flow.

View Article and Find Full Text PDF

The body color state is an important determinant of the value of golden severum ()-a popular ornamental fish. The use of dietary supplements to improve the color development and health of this species is unexplored. Herein, the effects of marigold extract (MG) and carophyll red (CR) are examined on the growth, body color development, antioxidant properties, and innate immunity in golden severum.

View Article and Find Full Text PDF

The present study aimed to evaluate the physiological responses to transport stress in juvenile tambaqui () fed a diet supplemented with hydroxy-selenomethionine (OH-SeMet; Selisseo, Adisseo) and determine through stress biomarkers whether selenium supplementation could reduce the impact of transport stress on tambaqui resilience. Juvenile fish (15.71 ± 1.

View Article and Find Full Text PDF

Transmembrane proteins (TMPs) are pivotal components of plant defence mechanisms, serving as essential mediators in the response to biotic stresses. These proteins are among the most complex and diverse within plant cells, making their study challenging. In spite of this, relatively few studies have focused on the investigation and characterization of TMPs in plants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!