In recent research of arsenic carcinogenesis, many researchers have directed their attention to methylated metabolites of inorganic arsenics. Because of its high cytotoxicity and genotoxicity, trivalent dimethylated arsenic, which can be produced by the metabolic reduction of dimethylarsinic acid (DMA), has attracted considerable attention from the standpoint of arsenic carcinogenesis. In the present paper, we examined trivalent dimethylated arsenic and its further metabolites for their chemical properties and biological behavior such as genotoxicity and tumorigenicity. Our in vitro and in vivo experiments suggested that the formation of cis-thymine glycol in DNA was induced via the production of dimethylated arsenic peroxide by the reaction of trivalent dimethylated arsenic with molecular oxygen, but not via the production of common reactive oxygen species (ROS; superoxide, hydrogen peroxide, hydroxyl radical, etc.). Thus, dimethylated arsenic peroxide may be the main species responsible for the tumor promotion in skin tumorigenesis induced by exposure to DMA. Free radical species, such as dimethylarsenic radical [(CH(3))(2)As.] and dimethylarsenic peroxy radical [(CH(3))(2)AsOO.], that are produced by the reaction of molecular oxygen and dimethylarsine [(CH(3))(2)AsH], which is probably a further reductive metabolite of trivalent dimethylated arsenic, may be main agents for initiation in mouse lung tumorigenesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.taap.2003.10.025DOI Listing

Publication Analysis

Top Keywords

dimethylated arsenic
24
trivalent dimethylated
16
arsenic
9
produced metabolic
8
metabolic reduction
8
reduction dimethylarsinic
8
dimethylarsinic acid
8
arsenic carcinogenesis
8
arsenic peroxide
8
molecular oxygen
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!