Scaffold proteins and assembly of multiprotein signaling complexes.

J Mol Cell Cardiol

Departments of Physiology and Medicine, Division of Cardiology, Cardiovascular Research Laboratories, University of California, Los Angeles, CA 90095, USA.

Published: August 2004

Intracellular signaling involves assembly and regulation of multiprotein complexes. These complexes are functional units of signal transduction and are a means by which protein networks carry out tasks within the cell. One mechanism to influence the components, the subcellular localization, and the activity of these complexes, involves scaffold proteins. Scaffold proteins facilitate signal transduction by tethering molecules together and serving as molecular backbones for signaling complex assembly. Recent studies, particularly in the field of signaling kinases, have considerably advanced our understanding of the role that scaffold proteins play within multiprotein complexes in cardiac and other cell types.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.yjmcc.2004.04.021DOI Listing

Publication Analysis

Top Keywords

scaffold proteins
16
multiprotein complexes
8
signal transduction
8
complexes
5
scaffold
4
proteins assembly
4
assembly multiprotein
4
signaling
4
multiprotein signaling
4
signaling complexes
4

Similar Publications

Bone Tissue Engineering: From Biomaterials to Clinical Trials.

Adv Exp Med Biol

January 2025

Department of Stem Cells & Regenerative Medicine, Centre for Interdisciplinary Research, D Y Patil Education Society (Deemed to be University), Kolhapur, India.

Bone tissue engineering is a promising field that aims to rebuild the bone tissue using biomaterials, cells, and signaling molecules. Materials like natural and synthetic polymers, inorganic materials, and composite materials are used to create scaffolds that mimic the hierarchical microstructure of bone. Stem cells, particularly mesenchymal stem cells (MSCs), play a crucial role in bone tissue engineering by promoting tissue regeneration and modulating the immune response.

View Article and Find Full Text PDF

Ditylenchus destructor, commonly known as the potato rot nematode, is a significant plant-parasitic pathogen affecting over 120 plant species globally. Effective control measures for D. destructor are limited, underscoring the need a high-quality reference genome to understand its pathogenic mechanisms.

View Article and Find Full Text PDF

Development of high-strength, 3D-printable, and biocompatible gelatin/κ-carrageenan dual-network hydrogels for wound healing.

Int J Biol Macromol

January 2025

The Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan, Guangdong Province 511518, China. Electronic address:

Gelatin/κ-carrageenan (Gel/KC) hydrogel has exhibited a significant potential in tissue engineering, however, there is still a need to further enhance its structural properties. This study developed a Gel/KC dual-network hydrogel with superior mechanical properties and structural stability, which was integrated with 3D printing to evaluate its ability to promote wound healing. The hydrogels with seven different Gel and KC ratios were prepared and characterized using rheological testing, thermal analysis, spectral analysis, micromorphology observation, and X-ray diffraction.

View Article and Find Full Text PDF

The stone marten (Martes foina) is an important species for cytogenetic studies in the order Carnivora. ZooFISH probes created from its chromosomes provided a strong and clean signal in chromosome painting experiments and were valuable for studying the evolution of carnivoran genome architecture. The research revealed that the stone marten chromosome set is similar to the presumed ancestral karyotype of the Carnivora, which added an additional value for the species.

View Article and Find Full Text PDF
Article Synopsis
  • Primary ciliary dyskinesia (PCD) is a rare genetic disorder linked to chronic respiratory issues, infertility, and problems with body asymmetry, primarily caused by mutations in the CCDC39 and CCDC40 genes.
  • Researchers used advanced techniques to investigate how these genetic variants impact cellular functions beyond just causing cilia to stop moving.
  • They discovered that the absence of CCDC39/CCDC40 creates a significant loss of over 90 ciliary structural proteins, leading to cilia dysfunction and other cellular issues, suggesting that gene therapy could potentially offer a new treatment strategy for PCD.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!