A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Optimizing the experimental design for ankle dorsiflexion fMRI. | LitMetric

Optimizing the experimental design for ankle dorsiflexion fMRI.

Neuroimage

Imaging Research, Sunnybrook and Women's College Health Sciences Centre, University of Toronto, Toronto, Ontario, Canada.

Published: August 2004

Compared to motor studies of the upper limb, few experiments have sought a relationship between blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) sensorimotor signals and the resulting lower limb output. In Experiment 1, using an fMRI simulator system, we determined the optimized experimental protocol based on two design types and four behavioral movement types during ankle dorsiflexion. Experiment 2 involved testing the BOLD sensitivity at 1.5 T during ankle movements. Subjects performed large- and small-amplitude dorsiflexion movement types using an event-related design, with the intent of contrasting spatial and temporal features of the BOLD signal. In both experiments, the subject's behavior was guided by visual biofeedback of their ankle flexion angle, using an MR-compatible fiberoptic tape. From Experiment 1, we found electromyography (EMG) difference voltage ratio of approximately 2:1 for large (40 degrees ) and small (15 degrees ) dorsiflexion, 0.13 mV and 0.07 mV, respectively. In Experimental 2, we found the peak BOLD % signal changes of 1.04% and 0.89%, for large (40 degrees ) and small (15 degrees ) dorsiflexion, respectively. In addition, graded dorsiflexion produced graded BOLD signals in the primary sensorimotor and supplementary motor areas in 10 of 12 healthy young subjects, attesting to the feasibility of lower-limb fMRI at 1.5 T. This study provides insight into the cortical network involved in dorsiflexion using an experimental paradigm that is likely to translate effectively to hemiparetic stroke subjects.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroimage.2004.03.035DOI Listing

Publication Analysis

Top Keywords

ankle dorsiflexion
8
movement types
8
bold signal
8
large degrees
8
degrees small
8
small degrees
8
degrees dorsiflexion
8
dorsiflexion
7
bold
5
optimizing experimental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!