Bladder wall replacement remains a challenging problem for urological surgery due to leakage, infection, stone formation, and extensive time needed for tissue regeneration. To explore the feasibility of producing a more functional biomaterial for bladder reconstitution, we incorporated muscle-derived cells (MDC) into small intestinal submucosa (SIS) scaffolds. MDC were harvested from mice hindleg muscle, transfected with a plasmid encoding for beta-galactosidase, and placed into single-layer SIS cell culture inserts. Twenty-five MDC and/or SIS specimens were incubated at 37 degrees C for either 10 or 20 days. After harvesting, mechanical properties were characterized using biaxial testing, and the areal strain under 1 MPa peak stress used to quantify tissue compliance. Histological results indicated that MDC migrated throughout the SIS after 20 days. The mean (+/-SE) areal strain of the 0 day control group was 0.182 +/- 0.027 (n=5). After 10 days incubation, the mean (+/-SE) areal strain in MDC/SIS was 0.247 +/- 0.014 (n=5) compared to 10 day control SIS 0.200 +/- 0.024 (n=6). After 20 days incubation, the mean areal strain of MDC/SIS was 0.255 +/- 0.019 (n=5) compared to control SIS 0.170 +/- 0.025 (n=5). Both 10 and 20 days seeded groups were significantly different (p=0.027) than that of incubated SIS alone, but were not different from each other. These results suggest that MDC growth was supported by SIS and that initial remodeling of the SIS ECM had occurred within the first 10 days of incubation, but may have slowed once the MDC had grown to confluence within the SIS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.biomaterials.2004.05.006 | DOI Listing |
Small Methods
December 2024
State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, P. R. China.
The limited energy density of micro-supercapacitors (MSCs) and challenges in their integration significantly impede the advancement of MSCs in wearable electronic devices. Here, this work designs a robust and wrinkled liquid metal-CNT-PEDOT:PSS film with high capacity and self-healing properties (defined as LM-CNT-PEDOT:PSS). The wrinkled structure further enhances tensile properties of LM-CNT-PEDOT:PSS and increases its active specific surface area per unit.
View Article and Find Full Text PDFSmall
November 2024
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China.
The development of high-performance sodium-ion batteries (SIBs) relies on enhancing the electrochemical properties of the electrodes, particularly the transition metal compounds (TMCs) through effective carbon coatings. Herein, a straightforward approach using polymerized natural pitch-derived carbon (PNPC) via step-growth polymerization regulates the lattice strain in NiS-NiO heterostructures (NSNO) on nickel foam (NF). This method replaces the complex multistep carbon coatings with a cost-effective liquid-phase application of PNPC, followed by pyrolysis to create PNPC@NSNO/NF.
View Article and Find Full Text PDFSmall
December 2024
Department of Mechanical and Industrial Engineering, Northeastern University, Boston, MA, 02115, USA.
Increasing the thickness of the electrodes is considered the primary strategy to elevate battery energy density. However, as the thickness increases, rate performance, cycling performance, and mechanical stability are affected due to the sluggish ion transfer kinetics and compromised structural integrity. Inspired by the natural hierarchical porous structure of trees, electrodes with bioinspired architecture are fabricated to address these challenges.
View Article and Find Full Text PDFCarbohydr Polym
December 2024
Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK. Electronic address:
Bimetallic zeolitic imidazolate frameworks (BZIFs) have received enormous attention due to their unique physi-chemical properties, but are rarely reported for electrically conductive hydrogel (ECH) applications arising from low intrinsic conductivity and poor dispersion. Herein, we propose an innovative strategy to prepare highly conductive and mechanically robust ECHs by in situ growing Ni/Co-BZIFs within the polyvinyl alcohol/sodium alginate dual network (PZPS). 2-methylimidazole (MeIM) ligands copolymerize with pyrrole monomers, enhancing the electrical conductivity; meanwhile, MeIM ligands act as anchor points for in-situ formation of BZIFs, effectively avoiding phase-to-phase interfacial resistance and ensuring a uniform distribution in the hydrogel network.
View Article and Find Full Text PDFAnn Biomed Eng
September 2024
James T. Willerson Center for Cardiovascular Modeling and Simulation, The Oden Institute for Computational Engineering and Sciences and the Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA.
An estimated 6.8 million people in the United States have an unruptured intracranial aneurysms, with approximately 30,000 people suffering from intracranial aneurysms rupture each year. Despite the development of population-based scores to evaluate the risk of rupture, retrospective analyses have suggested the limited usage of these scores in guiding clinical decision-making.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!